MPEG CDVS Feature Trajectories for Action Recognition in Videos

R. Dasari, Chang Wen Chen
{"title":"MPEG CDVS Feature Trajectories for Action Recognition in Videos","authors":"R. Dasari, Chang Wen Chen","doi":"10.1109/MIPR.2018.00069","DOIUrl":null,"url":null,"abstract":"Visual Action Recognition on mobile phones is a challenging problem. Mobile and wearable devices deal with power, memory, computational and hardware constraints, which mandate robust and lightweight algorithmic implementations for sophisticated vision applications, like action recognition. Compact Descriptors for Visual Search (CDVS) is an MPEG7 standard for an accelerated visual search on mobiles. In our work, we propose a mobile action recognition framework which classifies actions by tracking CDVS feature trajectories of human subjects. The proposed method capitalizes on the sparse, salient and memory efficient properties of CDVS features. Although our recognition accuracies on standard action datasets KTH, UCF50, and HMDB is not superior to the CNN based methods, our work explores and proves the feasibility of using CDVS features for action recognition.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Visual Action Recognition on mobile phones is a challenging problem. Mobile and wearable devices deal with power, memory, computational and hardware constraints, which mandate robust and lightweight algorithmic implementations for sophisticated vision applications, like action recognition. Compact Descriptors for Visual Search (CDVS) is an MPEG7 standard for an accelerated visual search on mobiles. In our work, we propose a mobile action recognition framework which classifies actions by tracking CDVS feature trajectories of human subjects. The proposed method capitalizes on the sparse, salient and memory efficient properties of CDVS features. Although our recognition accuracies on standard action datasets KTH, UCF50, and HMDB is not superior to the CNN based methods, our work explores and proves the feasibility of using CDVS features for action recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频中动作识别的MPEG cdv特征轨迹
手机的视觉动作识别是一个具有挑战性的问题。移动和可穿戴设备处理功率,内存,计算和硬件限制,这需要强大和轻量级的算法实现复杂的视觉应用,如动作识别。压缩视觉搜索描述符(Compact Descriptors for Visual Search, cddvs)是MPEG7的一个标准,用于加速移动设备上的视觉搜索。在我们的工作中,我们提出了一个移动动作识别框架,该框架通过跟踪人类受试者的cdv特征轨迹来对动作进行分类。该方法充分利用了cdv特征的稀疏性、显著性和内存效率。虽然我们在标准动作数据集KTH, UCF50和HMDB上的识别精度并不优于基于CNN的方法,但我们的工作探索并证明了使用cdv特征进行动作识别的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications A Multimodal Approach to Predict Social Media Popularity Ownership Identification and Signaling of Multimedia Content Components Deep Learning of Path-Based Tree Classifiers for Large-Scale Plant Species Identification Understanding User Profiles on Social Media for Fake News Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1