{"title":"Software design for decoupled parallel meshing of CAD models","authors":"Serban Georgescu, P. Chow","doi":"10.1109/SECSE.2013.6615096","DOIUrl":null,"url":null,"abstract":"The creation of Finite Element (FE) meshes is one of the most time-consuming steps in FE analysis. While the exponential increase in computational power, following Moore's law, has gradually reduced the time spent in the FE solver, this has not generally been the case for FE mesh creation software. There are two main reason why this has been the case: most FE meshers are still serial and human intervention is generally required. In this paper we present the design of a system that tackles both these issues. More specifically, this paper proposes a system that, in combination with an unmodified off-the-shelf serial meshing program and an off-the-shelf CAD kernel, results in a fast and scalable tool capable of meshing complex CAD models, such as the ones used in industry, with reduced user intervention. To achieve scalability, our system uses two levels of parallelism: assembly level parallelism - across the multiple parts found in an assembly-type CAD model, and part level parallelism - obtained by partitioning individual CAD solids in multiple sections at the CAD level. We show preliminary results for the parallel meshing of a complex laptop model via which we highlight both some of the achieved benefits and the main challenges that need to be addressed in order to obtain good scalability.","PeriodicalId":133144,"journal":{"name":"2013 5th International Workshop on Software Engineering for Computational Science and Engineering (SE-CSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Workshop on Software Engineering for Computational Science and Engineering (SE-CSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECSE.2013.6615096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The creation of Finite Element (FE) meshes is one of the most time-consuming steps in FE analysis. While the exponential increase in computational power, following Moore's law, has gradually reduced the time spent in the FE solver, this has not generally been the case for FE mesh creation software. There are two main reason why this has been the case: most FE meshers are still serial and human intervention is generally required. In this paper we present the design of a system that tackles both these issues. More specifically, this paper proposes a system that, in combination with an unmodified off-the-shelf serial meshing program and an off-the-shelf CAD kernel, results in a fast and scalable tool capable of meshing complex CAD models, such as the ones used in industry, with reduced user intervention. To achieve scalability, our system uses two levels of parallelism: assembly level parallelism - across the multiple parts found in an assembly-type CAD model, and part level parallelism - obtained by partitioning individual CAD solids in multiple sections at the CAD level. We show preliminary results for the parallel meshing of a complex laptop model via which we highlight both some of the achieved benefits and the main challenges that need to be addressed in order to obtain good scalability.