Short-Term Load Forecasting Using an LSTM Neural Network

Mohammad Safayet Hossain, H. Mahmood
{"title":"Short-Term Load Forecasting Using an LSTM Neural Network","authors":"Mohammad Safayet Hossain, H. Mahmood","doi":"10.1109/PECI48348.2020.9064654","DOIUrl":null,"url":null,"abstract":"In this paper, two forecasting models using long short term memory neural network (LSTM NN) are developed to predict short-term electrical load. The first model predicts a single step ahead load, while the other predicts multi-step intraday rolling horizons. The time series of the load is utilized in addition to weather data of the considered geographic area. A rolling time-index series including a time of the day index, a holiday flag and a day of the week index, is also embedded as a categorical feature vector, which is shown to increase the forecasting accuracy significantly. Moreover, to evaluate the performance of the LSTM NN, the performance of other machines, namely a generalized regression neural network (GRNN) and an extreme learning machine (ELM) is also shown. Hourly load data from the electrical reliability council of Texas (ERCOT) is used as benchmark data to evaluate the proposed algorithms.","PeriodicalId":285806,"journal":{"name":"2020 IEEE Power and Energy Conference at Illinois (PECI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Power and Energy Conference at Illinois (PECI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECI48348.2020.9064654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In this paper, two forecasting models using long short term memory neural network (LSTM NN) are developed to predict short-term electrical load. The first model predicts a single step ahead load, while the other predicts multi-step intraday rolling horizons. The time series of the load is utilized in addition to weather data of the considered geographic area. A rolling time-index series including a time of the day index, a holiday flag and a day of the week index, is also embedded as a categorical feature vector, which is shown to increase the forecasting accuracy significantly. Moreover, to evaluate the performance of the LSTM NN, the performance of other machines, namely a generalized regression neural network (GRNN) and an extreme learning machine (ELM) is also shown. Hourly load data from the electrical reliability council of Texas (ERCOT) is used as benchmark data to evaluate the proposed algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LSTM神经网络的短期负荷预测
本文建立了两种基于长短期记忆神经网络(LSTM NN)的短期电力负荷预测模型。第一个模型预测单步的负荷,而另一个模型预测多步的日内滚动地平线。除了考虑的地理区域的天气数据外,还利用了负荷的时间序列。该方法还嵌入了一个滚动的时间指数序列,其中包括一天的时间指数、假日标志和一周中的一天指数,作为分类特征向量,这大大提高了预测的准确性。此外,为了评估LSTM神经网络的性能,还展示了其他机器的性能,即广义回归神经网络(GRNN)和极限学习机(ELM)。采用德克萨斯州电力可靠性委员会(ERCOT)的每小时负荷数据作为基准数据来评估所提出的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis and Modeling of Multi-mode Operation for Series-parallel CLLC Resonant Converter Value Gradient Learning Approach in Power and Frequency Regulation of Grid-Connected Synchronverters A Robust MPPT Method Based on AWILOG-ZALMS Algorithm for SPV Systems Under Various Loads and Non-Uniform Irradiance Conditions New MMC-Based Multilevel Converter with Two-And-One Set of Arms and One Inductor Conceptual Design of an eVTOL Air Shuttle for Rapid Intercity Transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1