A Novel Approach for Generating Personalized Mention List on Micro-Blogging System

Ge Zhou, Lu Yu, Chuxu Zhang, Chuang Liu, Zi-Ke Zhang, Jianlin Zhang
{"title":"A Novel Approach for Generating Personalized Mention List on Micro-Blogging System","authors":"Ge Zhou, Lu Yu, Chuxu Zhang, Chuang Liu, Zi-Ke Zhang, Jianlin Zhang","doi":"10.1109/ICDMW.2015.51","DOIUrl":null,"url":null,"abstract":"Online social networks provide us a convenient way to access information, which in turn bring the information overload problem. Most of the previous works focused on analyzing user's retweet behavior on the micro-blogging system, and diverse recommendation algorithms were proposed to push personalized tweet list to users. In this paper, we aim to solve the overload problem in the mention list. We firstly explore the in-depth differences between mention and retweet behaviors, and find the users' various actions for a piece of mention. Then we propose a personalized ranking model with consideration on multi-dimensional relations among users and mention tweets to generate the personalized mention list. The experiment results on a micro-blogging system data set show that the proposed method performs better than benchmark methods.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Online social networks provide us a convenient way to access information, which in turn bring the information overload problem. Most of the previous works focused on analyzing user's retweet behavior on the micro-blogging system, and diverse recommendation algorithms were proposed to push personalized tweet list to users. In this paper, we aim to solve the overload problem in the mention list. We firstly explore the in-depth differences between mention and retweet behaviors, and find the users' various actions for a piece of mention. Then we propose a personalized ranking model with consideration on multi-dimensional relations among users and mention tweets to generate the personalized mention list. The experiment results on a micro-blogging system data set show that the proposed method performs better than benchmark methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微博系统个性化提及列表生成的一种新方法
在线社交网络为我们提供了一种方便的获取信息的方式,这反过来又带来了信息过载的问题。以往的工作大多侧重于分析用户在微博系统上的转发行为,并提出了多种推荐算法向用户推送个性化的推文列表。在本文中,我们的目标是解决提及表中的过载问题。我们首先深入探讨了提及和转发行为之间的差异,并找到了用户对于一条提及的各种行为。然后,我们提出了一种考虑用户与提及tweets之间多维关系的个性化排名模型,生成个性化的提及列表。在微博系统数据集上的实验结果表明,该方法的性能优于基准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1