F. Passos, E. Roca, R. Castro-López, F. Fernández, Y. Ye, D. Spina, T. Dhaene
{"title":"Frequency-dependent parameterized macromodeling of integrated inductors","authors":"F. Passos, E. Roca, R. Castro-López, F. Fernández, Y. Ye, D. Spina, T. Dhaene","doi":"10.1109/SMACD.2016.7520750","DOIUrl":null,"url":null,"abstract":"Integrated inductors are one of the most important passive elements in radio frequency design, due to their wide usage in wireless communication circuits. Typically, electromagnetic simulators are used in order to estimate the inductors performance with high accuracy as a function of the inductor geometrical and electrical parameters. Such simulations offer high-accuracy, but are computationally expensive and extremely time consuming. In this paper, a frequency-dependent parameterized macromodeling technique is adopted in order to overcome this problem. The proposed approach offers a high degree of automation, since it is based on sequential sampling algorithms, high efficiency and flexibility: a continuous frequency-domain model is given for each value of the chosen inductors parameters in the design space.","PeriodicalId":441203,"journal":{"name":"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD.2016.7520750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Integrated inductors are one of the most important passive elements in radio frequency design, due to their wide usage in wireless communication circuits. Typically, electromagnetic simulators are used in order to estimate the inductors performance with high accuracy as a function of the inductor geometrical and electrical parameters. Such simulations offer high-accuracy, but are computationally expensive and extremely time consuming. In this paper, a frequency-dependent parameterized macromodeling technique is adopted in order to overcome this problem. The proposed approach offers a high degree of automation, since it is based on sequential sampling algorithms, high efficiency and flexibility: a continuous frequency-domain model is given for each value of the chosen inductors parameters in the design space.