Issues in Bottleneck Detection in Multi-Tier Enterprise Applications

Jason Parekh, Gueyoung Jung, G. Swint, C. Pu, Akhil Sahai
{"title":"Issues in Bottleneck Detection in Multi-Tier Enterprise Applications","authors":"Jason Parekh, Gueyoung Jung, G. Swint, C. Pu, Akhil Sahai","doi":"10.1109/IWQOS.2006.250489","DOIUrl":null,"url":null,"abstract":"In this work, the performance of various machine learning classifiers with regard to bottleneck detection in enterprise, multi-tier applications governed by service level objectives is described. Specifically, in this paper, it demonstrates the effectiveness of three classifiers, a tree-augmented Naive Bayesian network, a J48 decision tree, and LogitBoost, using our bottleneck detection process, which delves into a new area of performance analysis based on the trends of metrics (first order derivative) rather than the metric value itself. Furthermore, the efficiency of each classifier by measuring the convergence speed, or the number of staging trials required in order to provide positive results is illustrated. Finally, the effectiveness of the classifiers used in the bottleneck detection process as each classifier strongly identifies the enterprise system bottleneck","PeriodicalId":248938,"journal":{"name":"200614th IEEE International Workshop on Quality of Service","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"200614th IEEE International Workshop on Quality of Service","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQOS.2006.250489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this work, the performance of various machine learning classifiers with regard to bottleneck detection in enterprise, multi-tier applications governed by service level objectives is described. Specifically, in this paper, it demonstrates the effectiveness of three classifiers, a tree-augmented Naive Bayesian network, a J48 decision tree, and LogitBoost, using our bottleneck detection process, which delves into a new area of performance analysis based on the trends of metrics (first order derivative) rather than the metric value itself. Furthermore, the efficiency of each classifier by measuring the convergence speed, or the number of staging trials required in order to provide positive results is illustrated. Finally, the effectiveness of the classifiers used in the bottleneck detection process as each classifier strongly identifies the enterprise system bottleneck
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层企业应用中的瓶颈检测问题
在这项工作中,描述了各种机器学习分类器在企业瓶颈检测方面的性能,由服务水平目标控制的多层应用程序。具体来说,在本文中,它展示了三种分类器的有效性,即树增强朴素贝叶斯网络,J48决策树和LogitBoost,使用我们的瓶颈检测过程,该过程深入研究了基于指标(一阶导数)趋势而不是度量值本身的性能分析的新领域。此外,每个分类器的效率通过测量收敛速度,或为了提供积极的结果而需要的阶段试验的数量来说明。最后,瓶颈检测过程中使用的分类器的有效性,因为每个分类器都能识别企业系统的瓶颈
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Variation of Route Flap Damping to Improve BGP Routing Convergence Dynamic Resource Reservation in IEEE 802.16 Broadband Wireless Networks On the Performance of Error-resilient End-point-based Multicast Streaming Dynamic Adaptation of Temporal Event Correlation for QoS Management in Distributed Systems Flow-Cookies: Using Bandwidth Amplification to Defend Against DDoS Flooding Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1