{"title":"A Modified Q-Learning Algorithm for Control of Two-Qubit Systems","authors":"Omar Shindi, Qi Yu, D. Dong, Jiangjun Tang","doi":"10.1109/ICMLC51923.2020.9469044","DOIUrl":null,"url":null,"abstract":"This paper investigates quantum control problems using tabular Q-learning. A modified tabular Q-learning algorithm based on dynamic greedy method is proposed and the proposed algorithm succeeds for finding control sequences to drive a two-qubit system to a given target state with high fidelity. The modified algorithm also shows improved performance over the traditional Q-learning for solving quantum control problems on continuous states space. Moreover, the modified tabular Q-learning algorithm is compared with stochastic gradient descent and Krotov algorithms for solving quantum control problems. Simulation results on a two-qubit system demonstrate the effectiveness of the proposed algorithm.","PeriodicalId":170815,"journal":{"name":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC51923.2020.9469044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates quantum control problems using tabular Q-learning. A modified tabular Q-learning algorithm based on dynamic greedy method is proposed and the proposed algorithm succeeds for finding control sequences to drive a two-qubit system to a given target state with high fidelity. The modified algorithm also shows improved performance over the traditional Q-learning for solving quantum control problems on continuous states space. Moreover, the modified tabular Q-learning algorithm is compared with stochastic gradient descent and Krotov algorithms for solving quantum control problems. Simulation results on a two-qubit system demonstrate the effectiveness of the proposed algorithm.