Performance Study of Mixed Reality for Edge Computing

Klervie Toczé, J. Lindqvist, S. Nadjm-Tehrani
{"title":"Performance Study of Mixed Reality for Edge Computing","authors":"Klervie Toczé, J. Lindqvist, S. Nadjm-Tehrani","doi":"10.1145/3344341.3368816","DOIUrl":null,"url":null,"abstract":"Edge computing is a recent paradigm where computing resources are placed close to the user, at the edge of the network. This is a promising enabler for applications that are too resource-intensive to be run on an end device, but at the same time require too low latency to be run in a cloud, such as for example mixed reality (MR). In this work, we present MR-Leo, a prototype for creating an MR-enhanced video stream. It enables offloading of the point cloud creation and graphic rendering at the edge. We study the performance of the prototype with regards to latency and throughput in five different configurations with different alternatives for the transport protocol, the video compression format and the end/edge devices used. The evaluations show that UDP and MJPEG are good candidates for achieving acceptable latency and that the design of the communication protocol is critical for offloading video stream analysis to the edge.","PeriodicalId":261870,"journal":{"name":"Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3344341.3368816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Edge computing is a recent paradigm where computing resources are placed close to the user, at the edge of the network. This is a promising enabler for applications that are too resource-intensive to be run on an end device, but at the same time require too low latency to be run in a cloud, such as for example mixed reality (MR). In this work, we present MR-Leo, a prototype for creating an MR-enhanced video stream. It enables offloading of the point cloud creation and graphic rendering at the edge. We study the performance of the prototype with regards to latency and throughput in five different configurations with different alternatives for the transport protocol, the video compression format and the end/edge devices used. The evaluations show that UDP and MJPEG are good candidates for achieving acceptable latency and that the design of the communication protocol is critical for offloading video stream analysis to the edge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边缘计算混合现实性能研究
边缘计算是最近的一种范例,它将计算资源放置在靠近用户的网络边缘。对于资源过于密集而无法在终端设备上运行的应用程序来说,这是一个很有前途的支持因素,但同时需要过低的延迟才能在云中运行,例如混合现实(MR)。在这项工作中,我们提出了MR-Leo,一个用于创建mr增强视频流的原型。它支持在边缘卸载点云创建和图形渲染。我们研究了原型在五种不同配置下的延迟和吞吐量方面的性能,这些配置具有不同的传输协议、视频压缩格式和所使用的端/边缘设备。评估表明,UDP和MJPEG是实现可接受延迟的良好候选者,并且通信协议的设计对于将视频流分析卸载到边缘至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SLO-ML: A Language for Service Level Objective Modelling in Multi-cloud Applications Edge Affinity-based Management of Applications in Fog Computing Environments Modelling and Prediction of Resource Utilization of Hadoop Clusters: A Machine Learning Approach Energy and Profit-Aware Proof-of-Stake Offloading in Blockchain-based VANETs A General Framework for Privacy-preserving Computation on Cloud Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1