High-resolution land-use land-cover change data for regional climate modelling applications over Europe – Part 1: The plant functional type basemap for 2015
V. Reinhart, P. Hoffmann, D. Rechid, J. Böhner, B. Bechtel
{"title":"High-resolution land-use land-cover change data for regional climate modelling applications over Europe – Part 1: The plant functional type basemap for 2015","authors":"V. Reinhart, P. Hoffmann, D. Rechid, J. Böhner, B. Bechtel","doi":"10.5194/essd-2021-251","DOIUrl":null,"url":null,"abstract":"Abstract. The concept of plant functional types (PFTs) is shown to be beneficial in representing the complexity of plant characteristics in land use and climate change studies using regional climate models (RCMs). By representing land use and land cover (LULC) as functional traits, responses and effects of specific plant communities can be directly coupled to the lowest atmospheric layers. To meet the requirements of RCMs for realistic LULC distribution, we developed a PFT dataset forEurope (LANDMATE PFT Version 1.0 Reinhart et al., 2021b, ;). The dataset is based on the high-resolution ESA-CCI land cover dataset and is further improved through the the additional use of climate information. Within the LANDMATE PFT dataset, satellite-based LULC information and climate data are combined to achieve the best possible representation of the diverse plant communities and their functions in the respective regional ecosystems while keeping the dataset most flexible for application in RCMs. Each LULC class of ESA-CCI is translated into PFT or PFT fractions including climate information by using the Holdridge Life Zone concept. Through the consideration of regional climate data, the resulting PFT map for Europe is regionally customized. A thorough evaluation of the LANDMATE PFT dataset is done using a comprehensive ground truth database over the European Continent. A suitable evaluation method has been developed and applied to assess the quality of thenew PFT dataset. The assessment shows that the dominant LULC groups, cropland and woodland, are well represented within the dataset while uncertainties are found for some less represented LULC groups. The LANDMATE PFT dataset provides a realistic, high-resolution LULC distribution for implementation in RCMs and is used as basis for the LUCAS LUC dataset introduced in the companion paper by Hoffmann et al. (submitted) which is available for use as LULC change input for RCM experiment setups focused on investigating LULC change impact.\n","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/essd-2021-251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The concept of plant functional types (PFTs) is shown to be beneficial in representing the complexity of plant characteristics in land use and climate change studies using regional climate models (RCMs). By representing land use and land cover (LULC) as functional traits, responses and effects of specific plant communities can be directly coupled to the lowest atmospheric layers. To meet the requirements of RCMs for realistic LULC distribution, we developed a PFT dataset forEurope (LANDMATE PFT Version 1.0 Reinhart et al., 2021b, ;). The dataset is based on the high-resolution ESA-CCI land cover dataset and is further improved through the the additional use of climate information. Within the LANDMATE PFT dataset, satellite-based LULC information and climate data are combined to achieve the best possible representation of the diverse plant communities and their functions in the respective regional ecosystems while keeping the dataset most flexible for application in RCMs. Each LULC class of ESA-CCI is translated into PFT or PFT fractions including climate information by using the Holdridge Life Zone concept. Through the consideration of regional climate data, the resulting PFT map for Europe is regionally customized. A thorough evaluation of the LANDMATE PFT dataset is done using a comprehensive ground truth database over the European Continent. A suitable evaluation method has been developed and applied to assess the quality of thenew PFT dataset. The assessment shows that the dominant LULC groups, cropland and woodland, are well represented within the dataset while uncertainties are found for some less represented LULC groups. The LANDMATE PFT dataset provides a realistic, high-resolution LULC distribution for implementation in RCMs and is used as basis for the LUCAS LUC dataset introduced in the companion paper by Hoffmann et al. (submitted) which is available for use as LULC change input for RCM experiment setups focused on investigating LULC change impact.