{"title":"Dynamic response and efficiency improvement of hybrid autonomous power system","authors":"N. Sihem, Cherif Adnan, B. Sami, B. Zafar","doi":"10.1109/SETIT.2016.7939875","DOIUrl":null,"url":null,"abstract":"In this paper, a design of an autonomous hybrid power system combining a few components as solar energy, a backup system component based on proton membrane exchange fuel cell, namely Energy Recovery and two kinds of energy storage, one based on H2 gas production namely Energy Storage and the second specified by using an Ultracapacitor bank is described and modeled. The main goal of this work is to present and to improve the efficiency of such system using a smart energy management. This latter, based on multi-agents system modeling, used to ensure the smooth operation of such system dedicated to remote area application. The model is developed and tested by MATLAB/Simulink using mathematical and finite state models to follow the behavior of the proposed system. Hence, the simulation results clearly indicate and prove that the multi-agents control approach is a promising and effective method used for the control of the systems combining various energy sources.","PeriodicalId":426951,"journal":{"name":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SETIT.2016.7939875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a design of an autonomous hybrid power system combining a few components as solar energy, a backup system component based on proton membrane exchange fuel cell, namely Energy Recovery and two kinds of energy storage, one based on H2 gas production namely Energy Storage and the second specified by using an Ultracapacitor bank is described and modeled. The main goal of this work is to present and to improve the efficiency of such system using a smart energy management. This latter, based on multi-agents system modeling, used to ensure the smooth operation of such system dedicated to remote area application. The model is developed and tested by MATLAB/Simulink using mathematical and finite state models to follow the behavior of the proposed system. Hence, the simulation results clearly indicate and prove that the multi-agents control approach is a promising and effective method used for the control of the systems combining various energy sources.