{"title":"A Smoke Detection Method based on Video for Early Fire-Alarming System","authors":"T. X. Truong, Jong-Myon Kim","doi":"10.3745/KIPSTB.2011.18B.4.213","DOIUrl":null,"url":null,"abstract":"This paper proposes an effective, four-stage smoke detection method based on video that provides emergency response in the event of unexpected hazards in early fire-alarming systems. In the first phase, an approximate median method is used to segment moving regions in the present frame of video. In the second phase, a color segmentation of smoke is performed to select candidate smoke regions from these moving regions. In the third phase, a feature extraction algorithm is used to extract five feature parameters of smoke by analyzing characteristics of the candidate smoke regions such as area randomness and motion of smoke. In the fourth phase, extracted five parameters of smoke are used as an input for a K-nearest neighbor (KNN) algorithm to identify whether the candidate smoke regions are smoke or non-smoke. Experimental results indicate that the proposed four-stage smoke detection method outperforms other algorithms in terms of smoke detection, providing a low false alarm rate and high reliability in open and large spaces.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2011.18B.4.213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes an effective, four-stage smoke detection method based on video that provides emergency response in the event of unexpected hazards in early fire-alarming systems. In the first phase, an approximate median method is used to segment moving regions in the present frame of video. In the second phase, a color segmentation of smoke is performed to select candidate smoke regions from these moving regions. In the third phase, a feature extraction algorithm is used to extract five feature parameters of smoke by analyzing characteristics of the candidate smoke regions such as area randomness and motion of smoke. In the fourth phase, extracted five parameters of smoke are used as an input for a K-nearest neighbor (KNN) algorithm to identify whether the candidate smoke regions are smoke or non-smoke. Experimental results indicate that the proposed four-stage smoke detection method outperforms other algorithms in terms of smoke detection, providing a low false alarm rate and high reliability in open and large spaces.