Simple RGC: ImageJ Plugins for Counting Retinal Ganglion Cells and Determining the Transduction Efficiency of Viral Vectors in Retinal Wholemounts

Tiger Cross, Rasika Navarange, Joon-ho Son, William Burr, Arjun Singh, Kelvin Zhang, M. Rusu, Konstantinos Gkoutzis, A. Osborne, Bart Nieuwenhuis Department of Computing, I. -. London, John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, U. Cambridge, L. Systems, Netherlands Institute for Neuroscience, R. Arts, Sciences
{"title":"Simple RGC: ImageJ Plugins for Counting Retinal Ganglion Cells and Determining the Transduction Efficiency of Viral Vectors in Retinal Wholemounts","authors":"Tiger Cross, Rasika Navarange, Joon-ho Son, William Burr, Arjun Singh, Kelvin Zhang, M. Rusu, Konstantinos Gkoutzis, A. Osborne, Bart Nieuwenhuis Department of Computing, I. -. London, John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, U. Cambridge, L. Systems, Netherlands Institute for Neuroscience, R. Arts, Sciences","doi":"10.5334/jors.342","DOIUrl":null,"url":null,"abstract":"Simple RGC consists of a collection of ImageJ plugins to assist researchers investigating retinal ganglion cell (RGC) injury models in addition to helping assess the effectiveness of treatments. The first plugin named RGC Counter accurately calculates the total number of RGCs from retinal wholemount images. The second plugin named RGC Transduction measures the co-localisation between two channels making it possible to determine the transduction efficiencies of viral vectors and transgene expression levels. The third plugin named RGC Batch is a batch image processor to deliver fast analysis of large groups of microscope images. These ImageJ plugins make analysis of RGCs in retinal wholemounts easy, quick, consistent, and less prone to unconscious bias by the investigator. The plugins are freely available from the ImageJ update site this https URL.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/jors.342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Simple RGC consists of a collection of ImageJ plugins to assist researchers investigating retinal ganglion cell (RGC) injury models in addition to helping assess the effectiveness of treatments. The first plugin named RGC Counter accurately calculates the total number of RGCs from retinal wholemount images. The second plugin named RGC Transduction measures the co-localisation between two channels making it possible to determine the transduction efficiencies of viral vectors and transgene expression levels. The third plugin named RGC Batch is a batch image processor to deliver fast analysis of large groups of microscope images. These ImageJ plugins make analysis of RGCs in retinal wholemounts easy, quick, consistent, and less prone to unconscious bias by the investigator. The plugins are freely available from the ImageJ update site this https URL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简单的RGC: ImageJ插件用于计数视网膜神经节细胞和确定病毒载体在视网膜整体的转导效率
Simple RGC包括一系列ImageJ插件,以帮助研究人员调查视网膜神经节细胞(RGC)损伤模型,并帮助评估治疗的有效性。第一个名为RGC计数器的插件准确地计算了视网膜整体图像中RGC的总数。第二个插件名为RGC Transduction,测量两个通道之间的共定位,从而可以确定病毒载体的转导效率和转基因表达水平。第三个插件名为RGC Batch,它是一个批处理图像处理器,可以快速分析大量显微镜图像。这些ImageJ插件使视网膜整体中rgc的分析变得简单、快速、一致,并且不容易受到研究者无意识偏见的影响。这些插件可以从ImageJ更新站点的https URL免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-amplitude coupling in neuronal oscillator networks Quality of internal representation shapes learning performance in feedback neural networks Generalisation of neuronal excitability allows for the identification of an excitability change parameter that links to an experimentally measurable value Short term memory by transient oscillatory dynamics in recurrent neural networks Predicting brain evoked response to external stimuli from temporal correlations of spontaneous activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1