Autonomous motion primitive segmentation of actions for incremental imitative learning of humanoid

Farhan Dawood, C. Loo
{"title":"Autonomous motion primitive segmentation of actions for incremental imitative learning of humanoid","authors":"Farhan Dawood, C. Loo","doi":"10.1109/RIISS.2014.7009169","DOIUrl":null,"url":null,"abstract":"During imitation learning or learning by demon-stration/observation, a crucial element of conception involves segmenting the continuous flow of motion into simpler units ÂĂŗ- motion primitives -ÂĂŗ by identifying the boundaries of an action. Secondly, in realistic environment the robot must be able to learn the observed motion patterns incrementally in a stable adaptive manner. In this paper, we propose an on-line and unsupervised motion segmentation method rendering the robot to learn actions by observing the patterns performed by other partner through Incremental Slow Feature Analysis. The segmentation model directly operates on the images acquired from the robot's vision sensor (camera) without requiring any kinematic model of the demonstrator. After segmentation, the spatio-temporal motion sequences are learned incrementally through Topological Gaussian Adaptive Resonance Hidden Markov Model. The learning model dynamically generates the topological structure in a self-organizing and self-stabilizing manner.","PeriodicalId":270157,"journal":{"name":"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIISS.2014.7009169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

During imitation learning or learning by demon-stration/observation, a crucial element of conception involves segmenting the continuous flow of motion into simpler units ÂĂŗ- motion primitives -ÂĂŗ by identifying the boundaries of an action. Secondly, in realistic environment the robot must be able to learn the observed motion patterns incrementally in a stable adaptive manner. In this paper, we propose an on-line and unsupervised motion segmentation method rendering the robot to learn actions by observing the patterns performed by other partner through Incremental Slow Feature Analysis. The segmentation model directly operates on the images acquired from the robot's vision sensor (camera) without requiring any kinematic model of the demonstrator. After segmentation, the spatio-temporal motion sequences are learned incrementally through Topological Gaussian Adaptive Resonance Hidden Markov Model. The learning model dynamically generates the topological structure in a self-organizing and self-stabilizing manner.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仿人机器人增量模仿学习的自主运动原语分割
在模仿学习或通过示范/观察学习期间,概念的一个关键要素包括将连续的运动流分割成更简单的单位ÂĂŗ-运动原语-ÂĂŗ,通过识别动作的边界。其次,在现实环境中,机器人必须能够以稳定的自适应方式增量学习观察到的运动模式。在本文中,我们提出了一种在线无监督运动分割方法,通过增量慢特征分析,使机器人通过观察其他伙伴的动作模式来学习动作。分割模型直接对从机器人视觉传感器(摄像头)获取的图像进行操作,而不需要演示器的任何运动学模型。分割后的时空运动序列通过拓扑高斯自适应共振隐马尔可夫模型进行增量学习。该学习模型以自组织、自稳定的方式动态生成拓扑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A route planning for disaster waste disposal based on robot technology Slip based pick-and-place by universal robot hand with force/torque sensors Application of stretchable strain sensor for pneumatic artificial muscle Development and performance comparison of extended Kalman filter and particle filter for self-reconfigurable mobile robots Medical interview training using depressed patient robot in psychiatric education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1