{"title":"Experimental Research on the Flow Resistance and Heat Transfer Characteristics in Rod Bundle Channel","authors":"Zhiqiang Zhu, Chunping Tian, Chang-qi Yan, Jianjun Wang, Tingting Ren, Zehua Guo","doi":"10.1115/ICONE26-82195","DOIUrl":null,"url":null,"abstract":"Single-phase natural circulation experiments were conducted to study the flow resistance and heat transfer characteristics in a 3 × 3 rod bundle channel with the ratio of rod pitch and rod outer diameter (P/D) 1.38. The range of inlet subcooling degree is 30∼90K and the heating power is 1∼20kW. The rods are heated with constant heat flux.\n According to the experimental results, the flow regime under natural circulation condition is divided and the transition Reynolds number is considered as 800. The flow transition is recognized by the slope change of friction factor curve since the flow transition in the rod bundle channel is not as obvious as that in round pipe. Simultaneously, the flow transition in the rod bundle is much earlier and the upper critical Reynolds number is much larger compared to regular channel like round pipe and rectangular channel. Two correlations for laminar and transition regime are fitted to calculate the friction factor. As for the grid spacer local resistance coefficient, there is slight change at Reynolds number 800 and similarly two correlations are fitted to calculate the local resistance coefficient. The Nusselt number tendency changes at around Reynolds number 4000 but keep unchanged at transition point, which means the flow transition has no obvious effect to the heat transfer. The heat transfer results are compared with different single-phase convective heat transfer correlations. D-B and Gnielinski correlations are not suitable for the heat transfer prediction in rod bundle channel and the relative deviation is more than 20%. Weisman, Presser and Markoczy correlations predict relatively well in high Reynolds number region, and Markoczy correlation is the best of them. In low Reynolds number region, most experimental results are larger than the correlations. D-B correlation based methods may be unsuitable for the heat transfer prediction in rod bundle channel and a new correlation needs to be proposed.","PeriodicalId":289940,"journal":{"name":"Volume 9: Student Paper Competition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-82195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Single-phase natural circulation experiments were conducted to study the flow resistance and heat transfer characteristics in a 3 × 3 rod bundle channel with the ratio of rod pitch and rod outer diameter (P/D) 1.38. The range of inlet subcooling degree is 30∼90K and the heating power is 1∼20kW. The rods are heated with constant heat flux.
According to the experimental results, the flow regime under natural circulation condition is divided and the transition Reynolds number is considered as 800. The flow transition is recognized by the slope change of friction factor curve since the flow transition in the rod bundle channel is not as obvious as that in round pipe. Simultaneously, the flow transition in the rod bundle is much earlier and the upper critical Reynolds number is much larger compared to regular channel like round pipe and rectangular channel. Two correlations for laminar and transition regime are fitted to calculate the friction factor. As for the grid spacer local resistance coefficient, there is slight change at Reynolds number 800 and similarly two correlations are fitted to calculate the local resistance coefficient. The Nusselt number tendency changes at around Reynolds number 4000 but keep unchanged at transition point, which means the flow transition has no obvious effect to the heat transfer. The heat transfer results are compared with different single-phase convective heat transfer correlations. D-B and Gnielinski correlations are not suitable for the heat transfer prediction in rod bundle channel and the relative deviation is more than 20%. Weisman, Presser and Markoczy correlations predict relatively well in high Reynolds number region, and Markoczy correlation is the best of them. In low Reynolds number region, most experimental results are larger than the correlations. D-B correlation based methods may be unsuitable for the heat transfer prediction in rod bundle channel and a new correlation needs to be proposed.