Embedding User Behavioral Aspect in TF-IDF Like Representation

Ligaj Pradhan, Chengcui Zhang, Steven Bethard, Xin Chen
{"title":"Embedding User Behavioral Aspect in TF-IDF Like Representation","authors":"Ligaj Pradhan, Chengcui Zhang, Steven Bethard, Xin Chen","doi":"10.1109/MIPR.2018.00061","DOIUrl":null,"url":null,"abstract":"Term Frequency – Inverse Document Frequency (TF-IDF) computes weight for each word in a document which increases proportionally to the number of times the word appears in a specific document but is counterbalanced by the number of times it occurs in the collection of documents. TF-IDF is the state-of-the-art for computing relevancy scores between documents. However, it is based on statistical learning alone and doesn’t directly capture the conceptual contents of the text or the behavioral aspects of the writer. Hence, in this work we show how relatively low dimensional user behavioral vectors extracted from the same text, from which TF-IDF vectors are extracted, can be used to enrich the performance of TF-IDF. We extract User-Concerns embedded in user reviews and append them to TF-IDF vectors to train a deep rating prediction model. Our experiments show that adding such conceptual knowledge to TF-IDF vectors can significantly enhance the performance of TF-IDF vectors by only adding very little complexity.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Term Frequency – Inverse Document Frequency (TF-IDF) computes weight for each word in a document which increases proportionally to the number of times the word appears in a specific document but is counterbalanced by the number of times it occurs in the collection of documents. TF-IDF is the state-of-the-art for computing relevancy scores between documents. However, it is based on statistical learning alone and doesn’t directly capture the conceptual contents of the text or the behavioral aspects of the writer. Hence, in this work we show how relatively low dimensional user behavioral vectors extracted from the same text, from which TF-IDF vectors are extracted, can be used to enrich the performance of TF-IDF. We extract User-Concerns embedded in user reviews and append them to TF-IDF vectors to train a deep rating prediction model. Our experiments show that adding such conceptual knowledge to TF-IDF vectors can significantly enhance the performance of TF-IDF vectors by only adding very little complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在TF-IDF类表示中嵌入用户行为方面
术语频率-逆文档频率(TF-IDF)计算文档中每个单词的权重,该权重与单词在特定文档中出现的次数成比例增加,但与它在文档集合中出现的次数相平衡。TF-IDF是计算文档之间相关性分数的最先进技术。然而,它仅基于统计学习,并不能直接捕捉文本的概念内容或作者的行为方面。因此,在这项工作中,我们展示了如何从同一文本中提取相对低维的用户行为向量,并从中提取TF-IDF向量,以丰富TF-IDF的性能。我们提取用户评论中嵌入的用户关注点,并将其附加到TF-IDF向量中,以训练深度评级预测模型。我们的实验表明,将这些概念知识添加到TF-IDF向量中,只需要增加很少的复杂性,就可以显著提高TF-IDF向量的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications A Multimodal Approach to Predict Social Media Popularity Ownership Identification and Signaling of Multimedia Content Components Deep Learning of Path-Based Tree Classifiers for Large-Scale Plant Species Identification Understanding User Profiles on Social Media for Fake News Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1