Comprehensive learning particle swarm optimizer with guidance vector selection

N. Lynn, P. N. Suganthan
{"title":"Comprehensive learning particle swarm optimizer with guidance vector selection","authors":"N. Lynn, P. N. Suganthan","doi":"10.1109/SIS.2013.6615162","DOIUrl":null,"url":null,"abstract":"In this paper, comprehensive learning particle swarm optimizer (CLPSO) is integrated with guidance vector selection. To update a particle's velocity and position, several candidate guidance positions are constructed based on all particles' best positions. Then the candidate guidance vector with the best fitness is selected to guide the particle. Simulation study is performed on CEC 2005 benchmark problems and the results show that the CLPSO with guidance vector selection has better performance when solving shifted and rotated optimization problems.","PeriodicalId":444765,"journal":{"name":"2013 IEEE Symposium on Swarm Intelligence (SIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Swarm Intelligence (SIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2013.6615162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, comprehensive learning particle swarm optimizer (CLPSO) is integrated with guidance vector selection. To update a particle's velocity and position, several candidate guidance positions are constructed based on all particles' best positions. Then the candidate guidance vector with the best fitness is selected to guide the particle. Simulation study is performed on CEC 2005 benchmark problems and the results show that the CLPSO with guidance vector selection has better performance when solving shifted and rotated optimization problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有引导向量选择的综合学习粒子群优化算法
本文将综合学习粒子群优化器(CLPSO)与引导向量选择相结合。为了更新粒子的速度和位置,基于所有粒子的最佳位置构造了几个候选制导位置。然后选择适应度最好的候选引导向量来引导粒子。在CEC 2005基准问题上进行了仿真研究,结果表明,带引导向量选择的CLPSO在求解平移和旋转优化问题时具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of stagnation behavior of vector evaluated particle swarm optimization Reinforcement learning in swarm-robotics for multi-agent foraging-task domain A novel ACO algorithm for dynamic binary chains based on changes in the system's stability Cooperative particle swarm optimization in dynamic environments Joint energy and spinning reserve dispatch in wind-thermal power system using IDE-SAR technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1