Discourses and Disciplines in the Enlightenment: Topic Modeling the French Encyclopédie

Glenn Roe, C. Gladstone, R. Morrissey
{"title":"Discourses and Disciplines in the Enlightenment: Topic Modeling the French Encyclopédie","authors":"Glenn Roe, C. Gladstone, R. Morrissey","doi":"10.3389/fdigh.2015.00008","DOIUrl":null,"url":null,"abstract":"This paper describes the use of Latent Dirichlet Allocation (LDA), or topic modeling, to explore the discursive makeup of the18th-century Encyclopedie of Denis Diderot and Jean le Rond d’Alembert (1751-1772). Expanding upon previous work modeling the Encyclopedie’s ontology, or classification scheme, we examine the abstractions used by its editors to visualize the various ‘systems’ of knowledge that the work proposes, considered here as heuristic tools for navigating the complex information space of the Encyclopedie. Using these earlier experiments with supervised machine learning models as a point of reference, we introduce the notion of topic modeling as a ‘discourse analysis tool’ for Enlightenment studies. In so doing, we draw upon the tradition of post-structuralist French discourse analysis, one of the first fields to embrace computational approaches to discursive text analysis. Our particular use of LDA is thus aimed primarily at uncovering inter-disciplinary ‘discourses’ in the Encyclopedie that run alongside, under, above, and through the original classifications. By mapping these discourses and discursive practices we can begin to move beyond the organizational (and physical) limitations of the print edition, suggesting several possible avenues of future research. These experiments thus attest once again to the enduring relevance of the Encyclopedie as an exemplary Enlightenment text. Its rich dialogical structure, whether studied using traditional methods of close reading or through the algorithmic processes described in this paper, is perhaps only now coming fully to light thanks to recent developments in digital resources and methods.","PeriodicalId":227954,"journal":{"name":"Frontiers Digit. Humanit.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers Digit. Humanit.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdigh.2015.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper describes the use of Latent Dirichlet Allocation (LDA), or topic modeling, to explore the discursive makeup of the18th-century Encyclopedie of Denis Diderot and Jean le Rond d’Alembert (1751-1772). Expanding upon previous work modeling the Encyclopedie’s ontology, or classification scheme, we examine the abstractions used by its editors to visualize the various ‘systems’ of knowledge that the work proposes, considered here as heuristic tools for navigating the complex information space of the Encyclopedie. Using these earlier experiments with supervised machine learning models as a point of reference, we introduce the notion of topic modeling as a ‘discourse analysis tool’ for Enlightenment studies. In so doing, we draw upon the tradition of post-structuralist French discourse analysis, one of the first fields to embrace computational approaches to discursive text analysis. Our particular use of LDA is thus aimed primarily at uncovering inter-disciplinary ‘discourses’ in the Encyclopedie that run alongside, under, above, and through the original classifications. By mapping these discourses and discursive practices we can begin to move beyond the organizational (and physical) limitations of the print edition, suggesting several possible avenues of future research. These experiments thus attest once again to the enduring relevance of the Encyclopedie as an exemplary Enlightenment text. Its rich dialogical structure, whether studied using traditional methods of close reading or through the algorithmic processes described in this paper, is perhaps only now coming fully to light thanks to recent developments in digital resources and methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
启蒙运动中的话语与学科:法国百科全书的主题建模
本文描述了潜在狄利克雷分配(LDA)或主题建模的使用,以探索18世纪丹尼斯·狄德罗和让·勒朗德·达朗贝尔(1751-1772)的百科全书的话语构成。在之前对百科全书本体或分类方案进行建模的基础上,我们检查了编辑使用的抽象概念,以将工作提出的各种知识“系统”可视化,这里将其视为导航百科全书复杂信息空间的启发式工具。利用这些早期的有监督机器学习模型实验作为参考,我们引入了主题建模的概念,作为启蒙研究的“话语分析工具”。在此过程中,我们借鉴了后结构主义法国语篇分析的传统,这是第一个采用计算方法进行语篇分析的领域之一。因此,我们对LDA的特殊使用主要是为了揭示百科全书中与原始分类并行、在原始分类之下、在原始分类之上和通过原始分类的跨学科“话语”。通过绘制这些话语和话语实践,我们可以开始超越印刷版的组织(和物理)限制,提出未来研究的几种可能途径。因此,这些实验再次证明了《百科全书》作为启蒙运动典范的持久相关性。其丰富的对话结构,无论是使用传统的细读方法还是通过本文中描述的算法过程来研究,由于数字资源和方法的最新发展,可能现在才完全暴露出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ancient City, Universal Growth? Exploring Urban Expansion and Economic Development on Rome's Eastern Periphery A New Kind of Relevance for Archaeology Modeling the Rise of the City: Early Urban Networks in Southern Italy Trajectories to Low-Density Settlements Past and Present: Paradox and Outcomes Corrigendum: Large-Scale Urban Prototyping for Responsive Cities: A Conceptual Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1