{"title":"Ear Biometrics Based on Geometrical Feature Extraction","authors":"M. Choraś","doi":"10.1142/9789812834461_0018","DOIUrl":null,"url":null,"abstract":"Biometrics identification methods proved to be very efficient, more natural and easy for users than traditional methods of human identification. In fact, only biometrics methods truly identify humans, not keys and cards they posses or passwords they should remember. The future of biometrics will surely lead to systems based on image analysis as the data acquisition is very simple and requires only cameras, scanners or sensors. More importantly such methods could be passive, which means that the user does not have to take active part in the whole process or, in fact, would not even know that the process of identification takes place. There are many possible data sources for human identification systems, but the physiological biometrics seem to have many advantages over methods based on human behaviour. The most interesting human anatomical parts for such passive, physiological biometrics systems based on images acquired from cameras are face and ear. Both of those methods contain large volume of unique features that allow to distinctively identify many users and will be surely implemented into efficient biometrics systems for many applications. The article introduces to ear biometrics and presents its advantages over face biometrics in passive human identification systems. Then the geometrical method of feature extraction from human ear images in order to perform human identification is presented.","PeriodicalId":181042,"journal":{"name":"Progress in Computer Vision and Image Analysis","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789812834461_0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158
Abstract
Biometrics identification methods proved to be very efficient, more natural and easy for users than traditional methods of human identification. In fact, only biometrics methods truly identify humans, not keys and cards they posses or passwords they should remember. The future of biometrics will surely lead to systems based on image analysis as the data acquisition is very simple and requires only cameras, scanners or sensors. More importantly such methods could be passive, which means that the user does not have to take active part in the whole process or, in fact, would not even know that the process of identification takes place. There are many possible data sources for human identification systems, but the physiological biometrics seem to have many advantages over methods based on human behaviour. The most interesting human anatomical parts for such passive, physiological biometrics systems based on images acquired from cameras are face and ear. Both of those methods contain large volume of unique features that allow to distinctively identify many users and will be surely implemented into efficient biometrics systems for many applications. The article introduces to ear biometrics and presents its advantages over face biometrics in passive human identification systems. Then the geometrical method of feature extraction from human ear images in order to perform human identification is presented.