Simple heuristic approach for training of Type-2 NEO-Fuzzy Neural Network

Y. Todorov, M. Terziyska
{"title":"Simple heuristic approach for training of Type-2 NEO-Fuzzy Neural Network","authors":"Y. Todorov, M. Terziyska","doi":"10.1109/PC.2015.7169976","DOIUrl":null,"url":null,"abstract":"This paper describes the development of Interval Type-2 NEO-Fuzzy Neural Network for modeling of complex dynamics. The proposed network represents a parallel set of multiple zero order Sugeno type approximations, related only to their own input argument. As learning procedure a simple heuristic backpropagation approach, where the sign of the gradient is taken into account, is adopted. To improve the robustness of the network and the possibilities for handling uncertainties, Interval Type-2 Gaussian fuzzy sets are introduced into the network topology. The potentials of the proposed approach in modeling of Mackey-Glass and Rossler Chaotic time series are studied. A comparison is made with the classical Gradient Descent learning approach.","PeriodicalId":173529,"journal":{"name":"2015 20th International Conference on Process Control (PC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 20th International Conference on Process Control (PC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PC.2015.7169976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes the development of Interval Type-2 NEO-Fuzzy Neural Network for modeling of complex dynamics. The proposed network represents a parallel set of multiple zero order Sugeno type approximations, related only to their own input argument. As learning procedure a simple heuristic backpropagation approach, where the sign of the gradient is taken into account, is adopted. To improve the robustness of the network and the possibilities for handling uncertainties, Interval Type-2 Gaussian fuzzy sets are introduced into the network topology. The potentials of the proposed approach in modeling of Mackey-Glass and Rossler Chaotic time series are studied. A comparison is made with the classical Gradient Descent learning approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2型neo -模糊神经网络训练的简单启发式方法
本文介绍了用于复杂动力学建模的区间2型neo -模糊神经网络的发展。所提出的网络代表了多个零阶Sugeno型近似的并行集,仅与它们自己的输入参数相关。作为学习过程,采用了一种简单的启发式反向传播方法,其中考虑了梯度的符号。为了提高网络的鲁棒性和处理不确定性的可能性,在网络拓扑中引入了区间2型高斯模糊集。研究了该方法在Mackey-Glass和Rossler混沌时间序列建模中的潜力。并与经典的梯度下降学习方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Suboptimal anisotropy-based/ℋ∞ filtering for LDTI systems with nonzero-mean input Use of polynomial approach for control of heat exchanger Neuro-fuzzy predictive control of thermo-optical plant Optimization of closed-loop poles for robust constrained control Frequency data based switched controller design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1