3D MEC modeling of a hybrid-excited claw pole alternator incorporating the rotor motion

Dhouha Elloumi, A. Ibala, R. Rebhi, A. Masmoudi
{"title":"3D MEC modeling of a hybrid-excited claw pole alternator incorporating the rotor motion","authors":"Dhouha Elloumi, A. Ibala, R. Rebhi, A. Masmoudi","doi":"10.1109/SMART.2015.7399253","DOIUrl":null,"url":null,"abstract":"The paper is devoted to the modeling of a hybrid-excited claw pole alternator (HECPA) by means of a variable position 3D magnetic equivalent circuit (MEC). The study is initiated by the derivation of a MEC with the rotor position kept at the maximum flux linkage between the rotor and stator, enabling the investigation of the steady-state features. The incorporation of the rotor position in the MEC is then considered. A dedicated numerical procedure based on the Newton-Raphson algorithm is developed for the resolution of the proposed variable position MEC. The obtained fluxes, for the different considered positions, allow the prediction of the HECPA time-varying features under no-load operation. A comparison between the results predicted by the variable position MEC and those computed by finite element analysis reveals a good agreement.","PeriodicalId":365573,"journal":{"name":"2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMART.2015.7399253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The paper is devoted to the modeling of a hybrid-excited claw pole alternator (HECPA) by means of a variable position 3D magnetic equivalent circuit (MEC). The study is initiated by the derivation of a MEC with the rotor position kept at the maximum flux linkage between the rotor and stator, enabling the investigation of the steady-state features. The incorporation of the rotor position in the MEC is then considered. A dedicated numerical procedure based on the Newton-Raphson algorithm is developed for the resolution of the proposed variable position MEC. The obtained fluxes, for the different considered positions, allow the prediction of the HECPA time-varying features under no-load operation. A comparison between the results predicted by the variable position MEC and those computed by finite element analysis reveals a good agreement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑转子运动的混合励磁爪极交流发电机三维MEC建模
本文研究了用变位置三维磁等效电路(MEC)对混合励磁爪极发电机(HECPA)进行建模的方法。该研究通过推导转子位置保持在转子和定子之间最大磁链的MEC来启动,从而能够研究稳态特征。然后考虑转子位置在MEC中的结合。提出了一种基于牛顿-拉夫森算法的专用数值求解方法。所得的通量,对于不同考虑的位置,允许预测空载运行下的HECPA时变特征。变位置MEC预测结果与有限元计算结果的比较表明,两者吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influences of different heating strategies on the energy demand of an airfield luggage tug Vehicle concept design by using a fuel cell as range extender An improved parametrization method for Li-ion linear static Equivalent Circuit battery Models based on direct current resistance measurement A DC link switch-based common mode voltage reduction scheme in PWM inverter drives On the stator magnetic circuit design of tubular-linear PM synchronous machines: A comparison between three topologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1