Shadow removal for aerial imagery by information theoretic intrinsic image analysis

Vivek Kwatra, Mei Han, Shengyang Dai
{"title":"Shadow removal for aerial imagery by information theoretic intrinsic image analysis","authors":"Vivek Kwatra, Mei Han, Shengyang Dai","doi":"10.1109/ICCPhot.2012.6215222","DOIUrl":null,"url":null,"abstract":"We present a novel technique for shadow removal based on an information theoretic approach to intrinsic image analysis. Our key observation is that any illumination change in the scene tends to increase the entropy of observed texture intensities. Similarly, the presence of texture in the scene increases the entropy of the illumination function. Consequently, we formulate the separation of an image into texture and illumination components as minimization of entropies of each component. We employ a non-parametric kernel-based quadratic entropy formulation, and present an efficient multi-scale iterative optimization algorithm for minimization of the resulting energy functional. Our technique may be employed either fully automatically, using a proposed learning based method for automatic initialization, or alternatively with small amount of user interaction. As we demonstrate, our method is particularly suitable for aerial images, which consist of either distinctive texture patterns, e.g. building facades, or soft shadows with large diffuse regions, e.g. cloud shadows.","PeriodicalId":169984,"journal":{"name":"2012 IEEE International Conference on Computational Photography (ICCP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPhot.2012.6215222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

We present a novel technique for shadow removal based on an information theoretic approach to intrinsic image analysis. Our key observation is that any illumination change in the scene tends to increase the entropy of observed texture intensities. Similarly, the presence of texture in the scene increases the entropy of the illumination function. Consequently, we formulate the separation of an image into texture and illumination components as minimization of entropies of each component. We employ a non-parametric kernel-based quadratic entropy formulation, and present an efficient multi-scale iterative optimization algorithm for minimization of the resulting energy functional. Our technique may be employed either fully automatically, using a proposed learning based method for automatic initialization, or alternatively with small amount of user interaction. As we demonstrate, our method is particularly suitable for aerial images, which consist of either distinctive texture patterns, e.g. building facades, or soft shadows with large diffuse regions, e.g. cloud shadows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息理论的航空图像内禀分析去影
本文提出了一种基于信息理论的图像内禀分析的阴影去除技术。我们的关键观察是,场景中的任何照明变化都倾向于增加观察到的纹理强度的熵。同样,场景中纹理的存在增加了照明函数的熵。因此,我们将图像分离为纹理和照明组件,作为每个组件熵的最小化。我们采用了一种非参数的基于核的二次熵公式,并提出了一种有效的多尺度迭代优化算法来最小化所产生的能量泛函。我们的技术可以完全自动地使用,使用建议的基于学习的方法进行自动初始化,或者使用少量的用户交互。正如我们所展示的,我们的方法特别适用于航空图像,这些图像由独特的纹理图案组成,例如建筑立面,或者具有大漫射区域的软阴影,例如云阴影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrast preserving decolorization Fast reactive control for illumination through rain and snow Diffuse structured light CS-MUVI: Video compressive sensing for spatial-multiplexing cameras Calibration-free rolling shutter removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1