Iron Loss Quantification in the Aim of the Estimation of Eddy Currents in Clamping Devices

K. Darques, A. Tounzi, A. Benabou, S. Shihab, J. Korecki, W. Boughanmi, D. Laloy
{"title":"Iron Loss Quantification in the Aim of the Estimation of Eddy Currents in Clamping Devices","authors":"K. Darques, A. Tounzi, A. Benabou, S. Shihab, J. Korecki, W. Boughanmi, D. Laloy","doi":"10.18280/ejee.230608","DOIUrl":null,"url":null,"abstract":"In high power electrical machines, the leakage magnetic flux due to end windings induces eddy currents in clamping devices. However, it is quite difficult to quantify these losses. In order to study the effect of different clamping materials and the impact of the magnetization direction, an experimental mock-up composed of a stator and a clamping plate has been developed. An axial coil generates a circumferential magnetic flux in the stator core at different frequencies. Eddy current losses in the clamping plates are deduced from a power balance by subtracting Joule losses and iron losses from the total measured losses. Iron losses are deduced from 3D FE calculations while the impact of the frequency on B(H) curve is taken into account. Losses in the clamping device are then analyzed depending on experimental parameters.","PeriodicalId":340029,"journal":{"name":"European Journal of Electrical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ejee.230608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In high power electrical machines, the leakage magnetic flux due to end windings induces eddy currents in clamping devices. However, it is quite difficult to quantify these losses. In order to study the effect of different clamping materials and the impact of the magnetization direction, an experimental mock-up composed of a stator and a clamping plate has been developed. An axial coil generates a circumferential magnetic flux in the stator core at different frequencies. Eddy current losses in the clamping plates are deduced from a power balance by subtracting Joule losses and iron losses from the total measured losses. Iron losses are deduced from 3D FE calculations while the impact of the frequency on B(H) curve is taken into account. Losses in the clamping device are then analyzed depending on experimental parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁损量化在箝位装置涡流估计中的应用
在大功率电机中,由于端部绕组的漏磁会在夹紧装置中产生涡流。然而,这些损失很难量化。为了研究不同夹紧材料的影响和对磁化方向的影响,研制了由定子和夹紧板组成的实验样机。轴向线圈在定子铁心中产生不同频率的周向磁通。夹紧板中的涡流损耗是通过从总测量损耗中减去焦耳损耗和铁损耗,从功率平衡中推导出来的。在考虑频率对B(H)曲线影响的情况下,通过三维有限元计算推导出铁损。然后根据实验参数分析夹紧装置中的损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Energy Tracking in a Solar Power System Utilizing Synthetic Neural Network Sensorless Field Oriented Control Applied for an Induction Machine by Using the Discontinuous PWM Strategy Intelligent FOPID and LQR Control for Adaptive a Quarter Vehicle Suspension System Development of Multicellular Converter with Magnetic Coupler for Space Charge Measurement on DC Cable Stability Control Modeling and Simulation Strategy for an Electric Vehicle Using Two Separate Wheel Drives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1