One-Stage Auto-Tuning Procedure of Robot Dynamics and Control Parameters for Trajectory Tracking Applications

L. Roveda, Marco Forgione, D. Piga
{"title":"One-Stage Auto-Tuning Procedure of Robot Dynamics and Control Parameters for Trajectory Tracking Applications","authors":"L. Roveda, Marco Forgione, D. Piga","doi":"10.1109/UR49135.2020.9144761","DOIUrl":null,"url":null,"abstract":"Autonomy is increasingly demanded by industrial manipulators. Robots have to be capable to regulate their behavior to different operational conditions, without requiring high time/resource-consuming human intervention. Achieving an automated tuning of the control parameters of a manipulator is still a challenging task. This paper addresses the problem of automated tuning of the manipulator controller for trajectory tracking. A Bayesian optimization algorithm is proposed to tune both the low-level controller parameters (i.e., robot dynamics compensation) and the high-level controller parameters (i.e., the joint PID gains). The algorithm adapts the control parameters through a data-driven procedure, optimizing a userdefined trajectory-tracking cost. Safety constraints ensuring, e.g., closed-loop stability and bounds on the maximum joint position errors, are also included. The performance of the proposed approach is demonstrated on a torque-controlled 7degree-of-freedom FRANKA Emika robot manipulator. The 25 robot control parameters (i.e., 4 link-mass parameters and 21 PID gains) are tuned in 125 iterations, and comparable results with respect to the FRANKA Emika embedded position controller are achieved.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"618 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Autonomy is increasingly demanded by industrial manipulators. Robots have to be capable to regulate their behavior to different operational conditions, without requiring high time/resource-consuming human intervention. Achieving an automated tuning of the control parameters of a manipulator is still a challenging task. This paper addresses the problem of automated tuning of the manipulator controller for trajectory tracking. A Bayesian optimization algorithm is proposed to tune both the low-level controller parameters (i.e., robot dynamics compensation) and the high-level controller parameters (i.e., the joint PID gains). The algorithm adapts the control parameters through a data-driven procedure, optimizing a userdefined trajectory-tracking cost. Safety constraints ensuring, e.g., closed-loop stability and bounds on the maximum joint position errors, are also included. The performance of the proposed approach is demonstrated on a torque-controlled 7degree-of-freedom FRANKA Emika robot manipulator. The 25 robot control parameters (i.e., 4 link-mass parameters and 21 PID gains) are tuned in 125 iterations, and comparable results with respect to the FRANKA Emika embedded position controller are achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于轨迹跟踪的机器人动力学和控制参数单阶段自整定方法
工业操作者对自主性的要求越来越高。机器人必须能够根据不同的操作条件调节自己的行为,而不需要耗费大量时间/资源的人为干预。实现机械手控制参数的自动整定仍然是一项具有挑战性的任务。研究了用于轨迹跟踪的机械臂控制器的自动整定问题。提出了一种贝叶斯优化算法,对低级控制器参数(即机器人动力学补偿)和高级控制器参数(即联合PID增益)进行整定。该算法通过数据驱动程序自适应控制参数,优化用户定义的轨迹跟踪成本。同时还包括保证闭环稳定性和最大关节位置误差的安全约束。在力矩控制的7自由度FRANKA Emika机器人机械臂上验证了该方法的性能。在125次迭代中调整了25个机器人控制参数(即4个连杆质量参数和21个PID增益),并获得了与FRANKA Emika嵌入式位置控制器相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy Improvement of Fisheye Stereo Camera by Combining Multiple Disparity Offset Maps Cloud Services for Culture Aware Conversation: Socially Assistive Robots and Virtual Assistants Robotic Path Planning for Inspection of Complex-Shaped Objects Prediction of expected Angle of knee joint of human lower limbs based on leg interaction A CNN-LSTM Hybrid Model for Ankle Joint Motion Recognition Method Based on sEMG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1