Low rank matrix recovery from sparse noise by ℓ2,1 loss function

Ji Li, Lina Zhao, Meiling Zhang, Xuke Hou
{"title":"Low rank matrix recovery from sparse noise by ℓ2,1 loss function","authors":"Ji Li, Lina Zhao, Meiling Zhang, Xuke Hou","doi":"10.1109/SIPROCESS.2016.7888331","DOIUrl":null,"url":null,"abstract":"In the last decades, Robust Principal Component Analysis (PCA) has been drawn much attention in the image processing, computer vision and machine learning communities and various robust PCA methods have been developed. This paper introduces a new generalized robust PCA with emphasizing on ℓ2, 1-norm minimization on loss function. The ℓ2, 1-norm instead of Frobenius norms based loss function is robust to outliers in data points. An efficient algorithm combine augmented Lagrange multiplier is develops. The experiments on both numerical simulated data and benchmark picture demonstrate that the proposed method outperforms the state-of-the-art because our method needs less iteration and more robust to outliers in data points.","PeriodicalId":142802,"journal":{"name":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPROCESS.2016.7888331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the last decades, Robust Principal Component Analysis (PCA) has been drawn much attention in the image processing, computer vision and machine learning communities and various robust PCA methods have been developed. This paper introduces a new generalized robust PCA with emphasizing on ℓ2, 1-norm minimization on loss function. The ℓ2, 1-norm instead of Frobenius norms based loss function is robust to outliers in data points. An efficient algorithm combine augmented Lagrange multiplier is develops. The experiments on both numerical simulated data and benchmark picture demonstrate that the proposed method outperforms the state-of-the-art because our method needs less iteration and more robust to outliers in data points.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用损失函数从稀疏噪声中恢复低秩矩阵
在过去的几十年里,鲁棒主成分分析(Robust Principal Component Analysis, PCA)在图像处理、计算机视觉和机器学习领域受到了广泛的关注,并开发了各种鲁棒主成分分析方法。本文介绍了一种新的广义鲁棒主成分分析,其重点是损失函数的1,2范数最小化。用1,2范数代替基于Frobenius范数的损失函数对数据点的异常值具有鲁棒性。提出了一种结合增广拉格朗日乘法器的高效算法。在数值模拟数据和基准图像上的实验表明,该方法迭代次数少,对数据点的异常值具有较强的鲁棒性,优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SIFT matching method based on K nearest neighbor support feature points Towards robust ego-centric hand gesture analysis for robot control Walking patterns of knee and ankle joints during level walking and uphill walking Vision-based autonomous detection of lane and pedestrians Analyses of signal characteristics of highly-maneuvering platform SAR and time-domain imaging method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1