GOMES: A group-aware multi-view fusion approach towards real-world image clustering

Zhe Xue, Guorong Li, Shuhui Wang, Chunjie Zhang, W. Zhang, Qingming Huang
{"title":"GOMES: A group-aware multi-view fusion approach towards real-world image clustering","authors":"Zhe Xue, Guorong Li, Shuhui Wang, Chunjie Zhang, W. Zhang, Qingming Huang","doi":"10.1109/ICME.2015.7177392","DOIUrl":null,"url":null,"abstract":"Different features describe different views of visual appearance, multi-view based methods can integrate the information contained in each view and improve the image clustering performance. Most of the existing methods assume that the importance of one type of feature is the same to all the data. However, the visual appearance of images are different, so the description abilities of different features vary with different images. To solve this problem, we propose a group-aware multi-view fusion approach. Images are partitioned into groups which consist of several images sharing similar visual appearance. We assign different weights to evaluate the pairwise similarity between different groups. Then the clustering results and the fusion weights are learned by an iterative optimization procedure. Experimental results indicate that our approach achieves promising clustering performance compared with the existing methods.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Different features describe different views of visual appearance, multi-view based methods can integrate the information contained in each view and improve the image clustering performance. Most of the existing methods assume that the importance of one type of feature is the same to all the data. However, the visual appearance of images are different, so the description abilities of different features vary with different images. To solve this problem, we propose a group-aware multi-view fusion approach. Images are partitioned into groups which consist of several images sharing similar visual appearance. We assign different weights to evaluate the pairwise similarity between different groups. Then the clustering results and the fusion weights are learned by an iterative optimization procedure. Experimental results indicate that our approach achieves promising clustering performance compared with the existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GOMES:面向真实世界图像聚类的群体感知多视图融合方法
不同的特征描述了视觉外观的不同视图,基于多视图的方法可以整合每个视图中包含的信息,提高图像聚类性能。现有的大多数方法都假设一种特征对所有数据的重要性是相同的。然而,图像的视觉外观是不同的,因此不同图像对不同特征的描述能力也不同。为了解决这一问题,我们提出了一种群体感知的多视图融合方法。图像被分成几组,每组由几个具有相似视觉外观的图像组成。我们分配不同的权重来评估不同组之间的两两相似性。然后通过迭代优化过程学习聚类结果和融合权值。实验结果表明,与现有的聚类方法相比,我们的方法取得了良好的聚类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Affect-expressive hand gestures synthesis and animation VTouch: Vision-enhanced interaction for large touch displays Egocentric hand pose estimation and distance recovery in a single RGB image A hybrid approach for retrieving diverse social images of landmarks Spatial perception reproduction of sound events based on sound property coincidences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1