Assessing Data Traffic Classification to Priority Access for Wireless Healthcare Application

Paulo Resque, S. Pinheiro, D. Rosário, E. Cerqueira, Andressa Vergutz, M. N. Lima, A. Santos
{"title":"Assessing Data Traffic Classification to Priority Access for Wireless Healthcare Application","authors":"Paulo Resque, S. Pinheiro, D. Rosário, E. Cerqueira, Andressa Vergutz, M. N. Lima, A. Santos","doi":"10.1109/LATINCOM48065.2019.8937872","DOIUrl":null,"url":null,"abstract":"New healthcare applications rely on wearable devices to collect and send patient's physiological and biomedical information to cloud servers, which executes most of the data processing and analysis. However, healthcare applications have strict requirements of packet delivery and traffic latency to ensure accurate information for medical/healthcare purposes. In this paper, we introduce a device management system, called MAESTRO, to improve the Quality of Service (QoS) for healthcare applications. The MAESTRO system combines a machine-learning traffic classification with a prioritization algorithm to provide a required transmission priority for physiological data. We set up the machine learning module in the R language, using the algorithms in the caret package. We implemented and simulated the prioritization algorithm in NS-3, in a scenario where wearable medical devices share network access with generic stations. Results confirmed the machine learning module achieved 91.5% of accuracy when identifying the physiological data and assigning the expected priority. Further, MAESTRO reached 60% of improvement in the packet delivery ratio for physiological data, in a scenario with a variable number of devices and stations.","PeriodicalId":120312,"journal":{"name":"2019 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM48065.2019.8937872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

New healthcare applications rely on wearable devices to collect and send patient's physiological and biomedical information to cloud servers, which executes most of the data processing and analysis. However, healthcare applications have strict requirements of packet delivery and traffic latency to ensure accurate information for medical/healthcare purposes. In this paper, we introduce a device management system, called MAESTRO, to improve the Quality of Service (QoS) for healthcare applications. The MAESTRO system combines a machine-learning traffic classification with a prioritization algorithm to provide a required transmission priority for physiological data. We set up the machine learning module in the R language, using the algorithms in the caret package. We implemented and simulated the prioritization algorithm in NS-3, in a scenario where wearable medical devices share network access with generic stations. Results confirmed the machine learning module achieved 91.5% of accuracy when identifying the physiological data and assigning the expected priority. Further, MAESTRO reached 60% of improvement in the packet delivery ratio for physiological data, in a scenario with a variable number of devices and stations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估无线医疗保健应用的数据流量分类和优先访问
新的医疗保健应用程序依靠可穿戴设备收集患者的生理和生物医学信息并将其发送到云服务器,云服务器执行大部分数据处理和分析。然而,医疗保健应用程序对数据包传递和流量延迟有严格的要求,以确保医疗/医疗保健目的的准确信息。在本文中,我们介绍了一个名为MAESTRO的设备管理系统,用于提高医疗保健应用程序的服务质量(QoS)。MAESTRO系统结合了机器学习流量分类和优先级算法,为生理数据提供所需的传输优先级。我们使用插入符号包中的算法,用R语言建立了机器学习模块。在可穿戴医疗设备与通用站共享网络访问的场景中,我们在NS-3中实现并模拟了优先级算法。结果证实,在识别生理数据和分配预期优先级时,机器学习模块的准确率达到了91.5%。此外,在设备和站点数量可变的情况下,MAESTRO在生理数据的数据包传输率方面提高了60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Extensible Access Control Architecture for Software Defined Networks based on X.812 Analysis of performance of fusion rules for cooperative spectrum sensing A Fronthaul Signal Compression Method Based on Trellis Coded Quantization Novel hybrid precoder based on SVD for downlink mmWave massive MU-MIMO systems A Simulation of an IoT-based Solution Using LoRaWAN for Remote Stations of Peruvian Navy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1