An experimental study on the strength distribution of cemented tailings backfill

Li Jie Guo, Xinzheng Chen, Xiaocong Yang, Xiaopeng Peng
{"title":"An experimental study on the strength distribution of cemented tailings backfill","authors":"Li Jie Guo, Xinzheng Chen, Xiaocong Yang, Xiaopeng Peng","doi":"10.36487/acg_repo/2052_06","DOIUrl":null,"url":null,"abstract":"To explore the spatial strength distribution of backfill in the stope, a group of experiments in a large similar stope model was designed for simulating the consolidation of cemented tailings backfill (CTB) in a stope. The height of CTB in similar stope model was measured to analyse the flow and sedimentation characteristics. The unconfined compressive strength (UCS) test on specimens cored in the different position of CTB sample in similar stope model was conducted. Moreover, the particle size and cement content of CTB sample were tested to help to explain the mechanism. The results show that during the flow and sedimentation of filling slurry in the model, inconsistency of the particle size and cement content leads to the inconsistency of strength. In the flow direction (horizontal direction), the median particle size of CTB first increases and then decreases, the cement content of CTB decreases slowly and then increases sharply, and the strength of CTB first decreases and then rises. In the sedimentation direction (vertical direction), the cement content of CTB decreases with the increase of depth, while the strength of CTB increases with the increase of depth. The strength is affected by the interaction between particle size and cement content, and the higher cement content of CTB does not translate into higher strength. The results provide a theoretical basis for improving the quality of CTB and optimizing the design.","PeriodicalId":164781,"journal":{"name":"23rd International Conference on Paste, Thickened and Filtered Tailings - PASTE 2020","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd International Conference on Paste, Thickened and Filtered Tailings - PASTE 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36487/acg_repo/2052_06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To explore the spatial strength distribution of backfill in the stope, a group of experiments in a large similar stope model was designed for simulating the consolidation of cemented tailings backfill (CTB) in a stope. The height of CTB in similar stope model was measured to analyse the flow and sedimentation characteristics. The unconfined compressive strength (UCS) test on specimens cored in the different position of CTB sample in similar stope model was conducted. Moreover, the particle size and cement content of CTB sample were tested to help to explain the mechanism. The results show that during the flow and sedimentation of filling slurry in the model, inconsistency of the particle size and cement content leads to the inconsistency of strength. In the flow direction (horizontal direction), the median particle size of CTB first increases and then decreases, the cement content of CTB decreases slowly and then increases sharply, and the strength of CTB first decreases and then rises. In the sedimentation direction (vertical direction), the cement content of CTB decreases with the increase of depth, while the strength of CTB increases with the increase of depth. The strength is affected by the interaction between particle size and cement content, and the higher cement content of CTB does not translate into higher strength. The results provide a theoretical basis for improving the quality of CTB and optimizing the design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尾砂胶结充填体强度分布试验研究
To探索采场内充填体的空间强度分布,设计了一组大型相似采场模型试验,模拟尾砂胶结充填体在采场内的固结。通过测量相似采场模型下CTB的高度,分析其流动沉降特性。对相似采场模型下不同位置取心的CTB试样进行了无侧限抗压强度试验。此外,还对CTB样品的粒径和水泥含量进行了测试,以帮助解释其机理。结果表明:在模型中充填料浆的流动和沉降过程中,颗粒尺寸和水泥含量的不一致导致了强度的不一致;在流动方向(水平方向)上,CTB的中位粒径先增大后减小,CTB的水泥含量先缓慢减小后急剧增大,CTB的强度先减小后升高。在沉降方向(垂直方向),CTB的水泥含量随深度的增加而降低,而CTB的强度随深度的增加而增加。强度受粒径和水泥掺量的相互作用影响,水泥掺量越高的CTB强度并不越高。研究结果为提高CTB的质量和优化设计提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monitoring of Moisture Content in Paste Tailings using Hyperspectral Cameras Technical and Economic Evaluation of Tailings Dewatering Circuits in the Largest Copper Mines Simulation of tailings filtration performance Barometric Column Filtration vs. Filtrate Pump Filtration Comparison - Case Study Paste and Thickened Tailings Transportation Design Aspects Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1