Nonlinearity-tolerated active noise control using an artificial neural network

C. X. Tan, H. Tachibana
{"title":"Nonlinearity-tolerated active noise control using an artificial neural network","authors":"C. X. Tan, H. Tachibana","doi":"10.1109/ASPAA.1997.625610","DOIUrl":null,"url":null,"abstract":"A nonlinearity-tolerated neural active noise control scheme is presented. Time-space patterns are adaptively integrated within its architecture. A learning algorithm with time-delayed memory corresponding to the secondary acoustic paths is adopted. Simulation experiments with a hybrid structure of vibrating radiation and sound in an enclosure are conducted. It is demonstrated that the proposed approach can achieve effective noise attenuation over the whole spectrum of interest, even with a strong nonlinear environment, while the conventional filtered-x LMS active noise controller falls in chaos.","PeriodicalId":347087,"journal":{"name":"Proceedings of 1997 Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPAA.1997.625610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A nonlinearity-tolerated neural active noise control scheme is presented. Time-space patterns are adaptively integrated within its architecture. A learning algorithm with time-delayed memory corresponding to the secondary acoustic paths is adopted. Simulation experiments with a hybrid structure of vibrating radiation and sound in an enclosure are conducted. It is demonstrated that the proposed approach can achieve effective noise attenuation over the whole spectrum of interest, even with a strong nonlinear environment, while the conventional filtered-x LMS active noise controller falls in chaos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的非线性容忍有源噪声控制
提出了一种非线性容忍神经主动噪声控制方案。时空模式自适应地集成在其架构中。采用了一种与次声路径相对应的延时记忆学习算法。对振动辐射声混合结构进行了仿真实验。结果表明,即使在强非线性环境下,该方法也能在整个频谱范围内实现有效的噪声衰减,而传统的滤波-x LMS有源噪声控制器则会陷入混沌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mixed nearfield/farfield beamforming: a new technique for speech acquisition in a reverberant environment Analysis of nonlinear and nonstationary processes in speech production Elimination of delay-free loops in discrete-time models of nonlinear acoustic systems Computational auditory scene analysis exploiting speech-recognition knowledge Towards a model of loudness recalibration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1