A Learning Rate For MIMO Nonlinear System Emulation

Farhat Yassin, Atig Asma, Z. Ali, Ben Abdennour Ridha
{"title":"A Learning Rate For MIMO Nonlinear System Emulation","authors":"Farhat Yassin, Atig Asma, Z. Ali, Ben Abdennour Ridha","doi":"10.1109/scc53769.2021.9768381","DOIUrl":null,"url":null,"abstract":"This paper presents an emulation scheme based on a novel method to adjust the learning rate for multivariable nonlinear dynamical systems. The aim of this paper is to adapt the learning rate of the Neural Emulator (NE) in order to accelerate the convergence speed and to improve the precision degree. To ensure fast convergence and good estimation, an online adaptation is developed using a criterion generated by the error of emulation. The obtained results prouve the efficiency of the designed NE compared to those obtained with an existing one using a fuzzy supervision.","PeriodicalId":365845,"journal":{"name":"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scc53769.2021.9768381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an emulation scheme based on a novel method to adjust the learning rate for multivariable nonlinear dynamical systems. The aim of this paper is to adapt the learning rate of the Neural Emulator (NE) in order to accelerate the convergence speed and to improve the precision degree. To ensure fast convergence and good estimation, an online adaptation is developed using a criterion generated by the error of emulation. The obtained results prouve the efficiency of the designed NE compared to those obtained with an existing one using a fuzzy supervision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MIMO非线性系统仿真的学习率
本文提出了一种基于新方法的多变量非线性动力系统学习率调节仿真方案。本文的目的是调整神经仿真器(NE)的学习率,以加快收敛速度,提高精度。为了保证快速收敛和良好的估计,利用仿真误差产生的准则进行了在线自适应。实验结果表明,与使用模糊监督的现有网络相比,所设计的网络是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation and Evaluation of the ACE DTLS Framework over Internet of Things Devices Rule-Based power sharing strategy for a fuel cell-supercapacitor vehicle Investigation the Performance Effect of QOS in MPLS-TE Network Advanced nonlinear method of a Photovoltaic system connected to the single-phase network Overview and comparatif of maximum power point tracking methods of PV power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1