Distributed PCP Theorems for Hardness of Approximation in P

Amir Abboud, A. Rubinstein, Richard Ryan Williams
{"title":"Distributed PCP Theorems for Hardness of Approximation in P","authors":"Amir Abboud, A. Rubinstein, Richard Ryan Williams","doi":"10.1109/FOCS.2017.12","DOIUrl":null,"url":null,"abstract":"We present a new distributed} model of probabilistically checkable proofs (PCP). A satisfying assignment x ∊ \\{0,1\\}^n to a CNF formula \\phi is shared between two parties, where Alice knows x_1, \\dots, x_{n/2, Bob knows x_{n/2+1},\\dots,x_n, and both parties know \\phi. The goal is to have Alice and Bob jointly write a PCP that x satisfies \\phi, while exchanging little or no information. Unfortunately, this model as-is does not allow for nontrivial query complexity. Instead, we focus on a non-deterministic} variant, where the players are helped by Merlin, a third party who knows all of x.Using our framework, we obtain, for the first time, PCP-like reductions from the Strong Exponential Time Hypothesis (SETH) to approximation problems in \\P. In particular, under SETH we show that %(assuming SETH) there are no truly-subquadratic approximation algorithms for %the following problems: Maximum Inner Product over \\{0,1\\}-vectors, LCS Closest Pair over permutations, Approximate Partial Match, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first three problems we obtain nearly-polynomial factors of 2^{(log n)^{1-o(1)}};only (1+o(1))-factor lower bounds (under SETH) were known before.As an additional feature of our reduction, we obtain new SETH lower bounds for the exact} monochromatic Closest Pair problem in the Euclidean, Manhattan, and Hamming metrics.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

Abstract

We present a new distributed} model of probabilistically checkable proofs (PCP). A satisfying assignment x ∊ \{0,1\}^n to a CNF formula \phi is shared between two parties, where Alice knows x_1, \dots, x_{n/2, Bob knows x_{n/2+1},\dots,x_n, and both parties know \phi. The goal is to have Alice and Bob jointly write a PCP that x satisfies \phi, while exchanging little or no information. Unfortunately, this model as-is does not allow for nontrivial query complexity. Instead, we focus on a non-deterministic} variant, where the players are helped by Merlin, a third party who knows all of x.Using our framework, we obtain, for the first time, PCP-like reductions from the Strong Exponential Time Hypothesis (SETH) to approximation problems in \P. In particular, under SETH we show that %(assuming SETH) there are no truly-subquadratic approximation algorithms for %the following problems: Maximum Inner Product over \{0,1\}-vectors, LCS Closest Pair over permutations, Approximate Partial Match, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first three problems we obtain nearly-polynomial factors of 2^{(log n)^{1-o(1)}};only (1+o(1))-factor lower bounds (under SETH) were known before.As an additional feature of our reduction, we obtain new SETH lower bounds for the exact} monochromatic Closest Pair problem in the Euclidean, Manhattan, and Hamming metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P近似硬度的分布PCP定理
提出了一种新的概率可检验证明(PCP)分布式模型。一个令人满意的作业x ∊{0,1}^n的CNF公式\phi在双方之间共享,其中Alice知道x_1, \dots,{x_n /2, Bob知道x_n{/2+1, }\dots,x_n,双方都知道\phi。目标是让Alice和Bob共同编写x满足\phi的PCP,同时交换很少或不交换信息。不幸的是,这个模型不允许非常复杂的查询。相反,我们专注于一个非确定性的}变体,其中玩家得到梅林的帮助,梅林是一个知道所有x的第三方。使用我们的框架,我们首次获得了从强指数时间假设(SETH)到\P近似问题的类似pcp的缩减。特别地,在SETH中我们展示了这一点 %(assuming SETH) there are no truly-subquadratic approximation algorithms for %the following problems: Maximum Inner Product over \{0,1\}-vectors, LCS Closest Pair over permutations, Approximate Partial Match, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first three problems we obtain nearly-polynomial factors of 2^{(log n)^{1-o(1)}};only (1+o(1))-factor lower bounds (under SETH) were known before.As an additional feature of our reduction, we obtain new SETH lower bounds for the exact} monochromatic Closest Pair problem in the Euclidean, Manhattan, and Hamming metrics.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Learning Mixtures of Well-Separated Gaussians Obfuscating Compute-and-Compare Programs under LWE Minor-Free Graphs Have Light Spanners Lockable Obfuscation How to Achieve Non-Malleability in One or Two Rounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1