Liouville type theorem for Hartree-Fock Equation on half space

Xiaomei Chen, Xiaohui Yu
{"title":"Liouville type theorem for Hartree-Fock Equation on half space","authors":"Xiaomei Chen, Xiaohui Yu","doi":"10.3934/cpaa.2022050","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we study the Liouville type theorem for the following Hartree-Fock equation in half space</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{align*} \\begin{cases} - \\Delta {u_i}(y) = \\sum\\limits_{j = 1}^n {{\\int _{\\partial \\mathbb{R}_ + ^N}}} \\frac{{{u_j}(\\bar x, 0){F_1}({u_j}(\\bar x, 0))}} {{|(\\bar x, 0) - y{|^{N - \\alpha }}}}d\\bar x{f_2}({u_i}(y)) \\\\ \\qquad \\qquad \\qquad + \\sum\\limits_{j = 1}^n {{\\int _{\\partial \\mathbb{R}_ + ^N}}} \\frac{{{u_j}(\\bar x, 0){F_2}({u_i}(\\bar x, 0))}} {{|(\\bar x, 0) - y{|^{N - \\alpha }}}}d\\bar x{f_1}({u_j}(y)), \\ y \\in \\mathbb{R}_ + ^N, \\hfill \\\\ \\frac{{\\partial {u_i}}} {{\\partial \\nu }}(\\bar x, 0) = \\sum\\limits_{j = 1}^n {{\\int _{ \\mathbb{R}_ + ^N}}} \\frac{{{u_j}(y){G_1}({u_j}(y))}} {{|(\\bar x, 0) - y{|^{N - \\alpha }}}}dy{g_2}({u_i}(\\bar x, 0)) \\\\ \\qquad \\qquad \\qquad + \\sum\\limits_{j = 1}^n {{\\int _{ \\mathbb{R}_ + ^N}}} \\frac{{{u_j}(y){G_2}({u_i}(y))}} {{|(\\bar x, 0) - y{|^{N - \\alpha }}}}dy{g_1}({u_j}(\\bar x, 0)), \\quad \\quad(\\bar x, 0) \\in \\partial \\mathbb{R}_ + ^N, \\end{cases} \\end{align*} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\mathbb{R}_+^N = \\{x\\in{\\mathbb{R}^N}: x_N > 0\\}, f_1, f_2, g_1, g_2, F_1, F_2, G_1, G_2 $\\end{document}</tex-math></inline-formula> are some nonlinear functions. Under some assumptions on the nonlinear functions <inline-formula><tex-math id=\"M2\">\\begin{document}$ F, G, f, g $\\end{document}</tex-math></inline-formula>, we will prove the above equation only possesses trivial positive solution. We use the moving plane method in an integral form to prove our result.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure &amp; Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the Liouville type theorem for the following Hartree-Fock equation in half space

where \begin{document}$ \mathbb{R}_+^N = \{x\in{\mathbb{R}^N}: x_N > 0\}, f_1, f_2, g_1, g_2, F_1, F_2, G_1, G_2 $\end{document} are some nonlinear functions. Under some assumptions on the nonlinear functions \begin{document}$ F, G, f, g $\end{document}, we will prove the above equation only possesses trivial positive solution. We use the moving plane method in an integral form to prove our result.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半空间上Hartree-Fock方程的Liouville型定理
In this paper, we study the Liouville type theorem for the following Hartree-Fock equation in half space \begin{document}$ \begin{align*} \begin{cases} - \Delta {u_i}(y) = \sum\limits_{j = 1}^n {{\int _{\partial \mathbb{R}_ + ^N}}} \frac{{{u_j}(\bar x, 0){F_1}({u_j}(\bar x, 0))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}d\bar x{f_2}({u_i}(y)) \\ \qquad \qquad \qquad + \sum\limits_{j = 1}^n {{\int _{\partial \mathbb{R}_ + ^N}}} \frac{{{u_j}(\bar x, 0){F_2}({u_i}(\bar x, 0))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}d\bar x{f_1}({u_j}(y)), \ y \in \mathbb{R}_ + ^N, \hfill \\ \frac{{\partial {u_i}}} {{\partial \nu }}(\bar x, 0) = \sum\limits_{j = 1}^n {{\int _{ \mathbb{R}_ + ^N}}} \frac{{{u_j}(y){G_1}({u_j}(y))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}dy{g_2}({u_i}(\bar x, 0)) \\ \qquad \qquad \qquad + \sum\limits_{j = 1}^n {{\int _{ \mathbb{R}_ + ^N}}} \frac{{{u_j}(y){G_2}({u_i}(y))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}dy{g_1}({u_j}(\bar x, 0)), \quad \quad(\bar x, 0) \in \partial \mathbb{R}_ + ^N, \end{cases} \end{align*} $\end{document} where \begin{document}$ \mathbb{R}_+^N = \{x\in{\mathbb{R}^N}: x_N > 0\}, f_1, f_2, g_1, g_2, F_1, F_2, G_1, G_2 $\end{document} are some nonlinear functions. Under some assumptions on the nonlinear functions \begin{document}$ F, G, f, g $\end{document}, we will prove the above equation only possesses trivial positive solution. We use the moving plane method in an integral form to prove our result.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle paths in equatorial flows Gagliardo-Nirenberg-Sobolev inequalities on planar graphs Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities Curvature-driven front propagation through planar lattices in oblique directions Two-sided estimates of total bandwidth for Schrödinger operators on periodic graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1