Semi-supervised outlier detection via bipartite graph clustering

Ayman El-Kilany, N. Tazi, Ehab Ezzat
{"title":"Semi-supervised outlier detection via bipartite graph clustering","authors":"Ayman El-Kilany, N. Tazi, Ehab Ezzat","doi":"10.1109/AICCSA.2016.7945629","DOIUrl":null,"url":null,"abstract":"A considerable amount of attributes in real datasets are not numerical, but rather textual and categorical. We investigate the problem of identifying outliers in categorical and textual datasets. We propose a clustering-based semi-supervised outlier detection method which basically represents normal and unlabeled data points as a bipartite graph. We leverage the existing free of parameters clustering techniques to cluster the resulting graph. The bipartite graph is clustered with a specific end goal to distinguish unlabeled data points as either outliers or normal data points. The proposed method is evaluated using multiple categorical and textual datasets against one-class support vector machines classifier and FRaC approach for semi-supervised outlier detection where the proposed method has shown a comparable performance.","PeriodicalId":448329,"journal":{"name":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2016.7945629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A considerable amount of attributes in real datasets are not numerical, but rather textual and categorical. We investigate the problem of identifying outliers in categorical and textual datasets. We propose a clustering-based semi-supervised outlier detection method which basically represents normal and unlabeled data points as a bipartite graph. We leverage the existing free of parameters clustering techniques to cluster the resulting graph. The bipartite graph is clustered with a specific end goal to distinguish unlabeled data points as either outliers or normal data points. The proposed method is evaluated using multiple categorical and textual datasets against one-class support vector machines classifier and FRaC approach for semi-supervised outlier detection where the proposed method has shown a comparable performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二部图聚类的半监督离群点检测
实际数据集中相当多的属性不是数字的,而是文本的和分类的。我们研究了在分类和文本数据集中识别异常值的问题。我们提出了一种基于聚类的半监督离群点检测方法,该方法基本上将正常和未标记的数据点表示为二部图。我们利用现有的无参数聚类技术对结果图进行聚类。二部图与特定的最终目标聚类,以区分未标记的数据点作为异常值或正常数据点。该方法使用多个分类和文本数据集对一类支持向量机分类器和FRaC方法进行评估,用于半监督离群值检测,其中所提出的方法显示出相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Foreword — Message from the general chairs Towards a framework for customer emotion detection Development of a thematic and structural elements grid for e-government strategies: Case study of Swiss cantons Complementary features for traffic sign detection and recognition Priority-MAC: A priority based medium access control solution with QoS for WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1