Sparsified Cholesky and multigrid solvers for connection laplacians

Rasmus Kyng, Y. Lee, Richard Peng, Sushant Sachdeva, D. Spielman
{"title":"Sparsified Cholesky and multigrid solvers for connection laplacians","authors":"Rasmus Kyng, Y. Lee, Richard Peng, Sushant Sachdeva, D. Spielman","doi":"10.1145/2897518.2897640","DOIUrl":null,"url":null,"abstract":"We introduce the sparsified Cholesky and sparsified multigrid algorithms for solving systems of linear equations. These algorithms accelerate Gaussian elimination by sparsifying the nonzero matrix entries created by the elimination process. We use these new algorithms to derive the first nearly linear time algorithms for solving systems of equations in connection Laplacians---a generalization of Laplacian matrices that arise in many problems in image and signal processing. We also prove that every connection Laplacian has a linear sized approximate inverse. This is an LU factorization with a linear number of nonzero entries that is a strong approximation of the original matrix. Using such a factorization one can solve systems of equations in a connection Laplacian in linear time. Such a factorization was unknown even for ordinary graph Laplacians.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"156","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 156

Abstract

We introduce the sparsified Cholesky and sparsified multigrid algorithms for solving systems of linear equations. These algorithms accelerate Gaussian elimination by sparsifying the nonzero matrix entries created by the elimination process. We use these new algorithms to derive the first nearly linear time algorithms for solving systems of equations in connection Laplacians---a generalization of Laplacian matrices that arise in many problems in image and signal processing. We also prove that every connection Laplacian has a linear sized approximate inverse. This is an LU factorization with a linear number of nonzero entries that is a strong approximation of the original matrix. Using such a factorization one can solve systems of equations in a connection Laplacian in linear time. Such a factorization was unknown even for ordinary graph Laplacians.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连接拉普拉斯算子的稀疏化Cholesky和多网格求解方法
介绍了求解线性方程组的稀疏化Cholesky算法和稀疏化多网格算法。这些算法通过稀疏化消去过程中产生的非零矩阵条目来加速高斯消去。我们使用这些新算法推导了第一个求解连接拉普拉斯矩阵方程组的近线性时间算法——拉普拉斯矩阵是在图像和信号处理中的许多问题中出现的一种推广。我们还证明了每个连接拉普拉斯矩阵都有一个线性大小的近似逆。这是一个具有线性数目的非零项的LU分解,它是原始矩阵的强近似。利用这种分解方法,可以在线性时间内求解连接拉普拉斯方程中的方程组。即使对于普通的图拉普拉斯算子,这种分解也是未知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exponential separation of communication and external information Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Explicit two-source extractors and resilient functions Constant-rate coding for multiparty interactive communication is impossible Approximating connectivity domination in weighted bounded-genus graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1