Discretizing Unobserved Heterogeneity

S. Bonhomme, T. Lamadon, E. Manresa
{"title":"Discretizing Unobserved Heterogeneity","authors":"S. Bonhomme, T. Lamadon, E. Manresa","doi":"10.2139/ssrn.3333452","DOIUrl":null,"url":null,"abstract":"We study discrete panel data methods where unobserved heterogeneity is revealed in a first step, in environments where population heterogeneity is not discrete. We focus on \n two‐step grouped fixed‐effects (GFE) estimators, where individuals are first classified into groups using \n kmeans clustering, and the model is then estimated allowing for group‐specific heterogeneity. Our framework relies on two key properties: heterogeneity is a function—possibly nonlinear and time‐varying—of a low‐dimensional continuous latent type, and informative moments are available for classification. We illustrate the method in a model of wages and labor market participation, and in a probit model with time‐varying heterogeneity. We derive asymptotic expansions of two‐step GFE estimators as the number of groups grows with the two dimensions of the panel. We propose a data‐driven rule for the number of groups, and discuss bias reduction and inference.\n","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3333452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

Abstract

We study discrete panel data methods where unobserved heterogeneity is revealed in a first step, in environments where population heterogeneity is not discrete. We focus on two‐step grouped fixed‐effects (GFE) estimators, where individuals are first classified into groups using kmeans clustering, and the model is then estimated allowing for group‐specific heterogeneity. Our framework relies on two key properties: heterogeneity is a function—possibly nonlinear and time‐varying—of a low‐dimensional continuous latent type, and informative moments are available for classification. We illustrate the method in a model of wages and labor market participation, and in a probit model with time‐varying heterogeneity. We derive asymptotic expansions of two‐step GFE estimators as the number of groups grows with the two dimensions of the panel. We propose a data‐driven rule for the number of groups, and discuss bias reduction and inference.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散化未观测异质性
我们研究了离散面板数据方法,其中在第一步揭示了未观察到的异质性,在人口异质性不是离散的环境中。我们专注于两步分组固定效应(GFE)估计,其中首先使用kmeans聚类将个体分类到组中,然后估计模型,允许组特定的异质性。我们的框架依赖于两个关键属性:异质性是一个低维连续潜在类型的函数-可能是非线性和时变的,并且信息矩可用于分类。我们在工资和劳动力市场参与的模型以及具有时变异质性的probit模型中说明了该方法。我们得到了两步GFE估计量的渐近展开式,当组的数量随面板的二维增长而增加时。我们提出了一个数据驱动的分组数量规则,并讨论了偏差减少和推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonparametric Tests of Conditional Independence for Time Series Estimating Demand with Multi-Homing in Two-Sided Markets Does Court Type, Size and Employee Satisfaction Affect Court Speed?. Hierarchical Linear Modelling With Evidence from Kenya Development of Estimation and Forecasting Method in Intelligent Decision Support Systems Estimating Financial Networks by Realized Interdependencies: A Restricted Autoregressive Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1