Coarse-Grained Floorplanning for streaming CNN applications on Multi-Die FPGAs

Danielle Tchuinkou Kwadjo, Erman Nghonda Tchinda, C. Bobda
{"title":"Coarse-Grained Floorplanning for streaming CNN applications on Multi-Die FPGAs","authors":"Danielle Tchuinkou Kwadjo, Erman Nghonda Tchinda, C. Bobda","doi":"10.1109/ISPDC55340.2022.00014","DOIUrl":null,"url":null,"abstract":"With the vast adoption of FPGAs in the cloud, it becomes necessary to investigate architectures and mechanisms for the efficient deployment of CNN into multi-FPGAs cloud Infrastructure. However, neural networks’ growing size and complexity, coupled with communication and off-chip memory bottlenecks, make it increasingly difficult for multi-FPGA designs to achieve high resource utilization. In this work, we introduce a scalable framework that supports the efficient integration of CNN applications into a cloud infrastructure that exposes multi-Die FPGAs to cloud developers. Our framework is equipped is with two mechanisms to facilitate the deployment of CNN inference on FPGA. First, we propose a model to find the parameters that maximize the parallelism within the resource budget while maintaining a balanced rate between the layers. Then, we propose an efficient Coarse-Grained graph partitioning algorithm for high-quality and scalable routability-drive placement of CNN’s components on the FPGAs. Prototyping results achieve an overall 37% higher frequency, with lower resource usage compared to a baseline implementation on the same number of FPGAs.","PeriodicalId":389334,"journal":{"name":"2022 21st International Symposium on Parallel and Distributed Computing (ISPDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium on Parallel and Distributed Computing (ISPDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC55340.2022.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the vast adoption of FPGAs in the cloud, it becomes necessary to investigate architectures and mechanisms for the efficient deployment of CNN into multi-FPGAs cloud Infrastructure. However, neural networks’ growing size and complexity, coupled with communication and off-chip memory bottlenecks, make it increasingly difficult for multi-FPGA designs to achieve high resource utilization. In this work, we introduce a scalable framework that supports the efficient integration of CNN applications into a cloud infrastructure that exposes multi-Die FPGAs to cloud developers. Our framework is equipped is with two mechanisms to facilitate the deployment of CNN inference on FPGA. First, we propose a model to find the parameters that maximize the parallelism within the resource budget while maintaining a balanced rate between the layers. Then, we propose an efficient Coarse-Grained graph partitioning algorithm for high-quality and scalable routability-drive placement of CNN’s components on the FPGAs. Prototyping results achieve an overall 37% higher frequency, with lower resource usage compared to a baseline implementation on the same number of FPGAs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模fpga流CNN应用的粗粒度平面规划
随着fpga在云端的广泛应用,有必要研究将CNN高效部署到多fpga云基础设施中的架构和机制。然而,神经网络的日益庞大和复杂,加上通信和片外存储器的瓶颈,使得多fpga设计越来越难以实现高资源利用率。在这项工作中,我们引入了一个可扩展的框架,该框架支持将CNN应用程序有效地集成到云基础设施中,从而向云开发人员公开多芯片fpga。我们的框架配备了两种机制来促进CNN推理在FPGA上的部署。首先,我们提出了一个模型来找到在资源预算内最大化并行性的参数,同时保持层之间的平衡速率。然后,我们提出了一种高效的粗粒度图划分算法,用于在fpga上放置CNN组件的高质量和可扩展的路由驱动。与相同数量的fpga的基线实现相比,原型结果总体上实现了37%的高频率,资源使用量更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating the Impact of Communication Schemes for Distributed Graph Processing Sponsors and Conference Support Performance Comparison of Speculative Taskloop and OpenMP-for-Loop Thread-Level Speculation on Hardware Transactional Memory [Full] Deep Heuristic for Broadcasting in Arbitrary Networks Analysis and Mitigation of Soft-Errors on High Performance Embedded GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1