Assuring Learning-Enabled Increasingly Autonomous Systems*

Nandith Narayan, Parth Ganeriwala, Randolph M. Jones, M. Matessa, S. Bhattacharyya, Jennifer Davis, Hemant Purohit, Simone Fulvio Rollini
{"title":"Assuring Learning-Enabled Increasingly Autonomous Systems*","authors":"Nandith Narayan, Parth Ganeriwala, Randolph M. Jones, M. Matessa, S. Bhattacharyya, Jennifer Davis, Hemant Purohit, Simone Fulvio Rollini","doi":"10.1109/SysCon53073.2023.10131227","DOIUrl":null,"url":null,"abstract":"Autonomous agents are expected to intelligently handle emerging situations with appropriate interaction with humans, while executing the operations. This is possible today with the integration of advanced technologies, such as machine learning, but these complex algorithms pose a challenge to verification and thus the eventual certification of the autonomous agent. In the discussed approach, we illustrate how safety properties for a learning-enabled increasingly autonomous agent can be formally verified early in the design phase. We demonstrate this methodology by designing a learning-enabled increasingly autonomous agent in a cognitive architecture, Soar. The agent includes symbolic decision logic with numeric decision preferences that are tuned by reinforcement learning to produce post-learning decision knowledge. The agent is then automatically translated into nuXmv, and properties are verified over the agent.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Systems Conference (SysCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SysCon53073.2023.10131227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous agents are expected to intelligently handle emerging situations with appropriate interaction with humans, while executing the operations. This is possible today with the integration of advanced technologies, such as machine learning, but these complex algorithms pose a challenge to verification and thus the eventual certification of the autonomous agent. In the discussed approach, we illustrate how safety properties for a learning-enabled increasingly autonomous agent can be formally verified early in the design phase. We demonstrate this methodology by designing a learning-enabled increasingly autonomous agent in a cognitive architecture, Soar. The agent includes symbolic decision logic with numeric decision preferences that are tuned by reinforcement learning to produce post-learning decision knowledge. The agent is then automatically translated into nuXmv, and properties are verified over the agent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
确保学习能力增强的自主系统*
期望自主代理在执行操作的同时,通过与人类的适当交互,智能地处理新出现的情况。如今,随着机器学习等先进技术的整合,这是可能的,但这些复杂的算法对验证构成了挑战,因此对自主代理的最终认证也构成了挑战。在讨论的方法中,我们说明了如何在设计阶段早期正式验证支持学习的日益自治的代理的安全属性。我们通过在认知架构Soar中设计一个支持学习的日益自主的代理来演示这种方法。该智能体包括具有数字决策偏好的符号决策逻辑,这些决策偏好通过强化学习进行调整,以产生学习后的决策知识。然后将代理自动转换为nuXmv,并在代理上验证属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling UAS Flight Procedures for SORA Safety Objectives A Deep Reinforcement Learning Solution for the Low Level Motion Control of a Robot Manipulator System Functional Architecture for Holistic Grid and Market Oriented Power Management Applying a MBSE Methodology in Small Scale Technology Development 1 Ensemble Method For Fault Detection & Classification in Transmission Lines Using ML
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1