Hurst Parameter Estimator Based on a Decomposition by Aggregated Series

L. Estrada, D. Torres, J. Ramirez
{"title":"Hurst Parameter Estimator Based on a Decomposition by Aggregated Series","authors":"L. Estrada, D. Torres, J. Ramirez","doi":"10.1109/CONIELECOMP.2008.19","DOIUrl":null,"url":null,"abstract":"In this work, a comparison of three estimators of the Hurst parameter is presented: the classical variance-based method and two new estimators based on an orthogonal decomposition (that can be achieved by aggregated series or by using Haar filters) and that use, respectively, a weighted and a non-weighted linear regression. These three estimators were applied to a set of synthetic fGN traces. The analyses showed that the variance method and the estimator that uses non-weighted linear regression underestimate the theoretical value of H, while the third estimator, decomposition-based, that uses a weighted linear regression, shows an excellent behavior. This estimator presented a bias nearer to zero and the lowest standard error when applied to fGN traces for lengths from 1024 to 1048576 samples. The presented decomposition can be extended to study the frequency information of the time series, by obtaining what we call Hurst spectrum, and to generate time series that comply the definitions of self-similar time series.","PeriodicalId":202730,"journal":{"name":"18th International Conference on Electronics, Communications and Computers (conielecomp 2008)","volume":"65 Suppl 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Electronics, Communications and Computers (conielecomp 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIELECOMP.2008.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, a comparison of three estimators of the Hurst parameter is presented: the classical variance-based method and two new estimators based on an orthogonal decomposition (that can be achieved by aggregated series or by using Haar filters) and that use, respectively, a weighted and a non-weighted linear regression. These three estimators were applied to a set of synthetic fGN traces. The analyses showed that the variance method and the estimator that uses non-weighted linear regression underestimate the theoretical value of H, while the third estimator, decomposition-based, that uses a weighted linear regression, shows an excellent behavior. This estimator presented a bias nearer to zero and the lowest standard error when applied to fGN traces for lengths from 1024 to 1048576 samples. The presented decomposition can be extended to study the frequency information of the time series, by obtaining what we call Hurst spectrum, and to generate time series that comply the definitions of self-similar time series.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚合级数分解的Hurst参数估计
在这项工作中,提出了赫斯特参数的三种估计方法的比较:经典的基于方差的方法和基于正交分解的两种新的估计方法(可以通过聚合序列或通过使用Haar滤波器实现),分别使用加权和非加权线性回归。这三个估计器被应用于一组合成的fGN轨迹。分析表明,方差法和使用非加权线性回归的估计器低估了H的理论值,而使用加权线性回归的基于分解的第三种估计器表现出良好的行为。当应用于长度从1024到1048576个样本的fGN跟踪时,该估计器呈现出接近于零的偏差和最低的标准误差。所提出的分解可以扩展到研究时间序列的频率信息,得到我们所说的赫斯特谱,并生成符合自相似时间序列定义的时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Localization Control for LEGO Robot's Navigation Digital Spirometer with LabView Interface Fast Fourier Transform Adjusted into 8 Bit Format for Instrumentation Purposes Extended Period LFSR Using Variable TAP Function Analysis and Implementation of LMS Algorithm with Coding Error in the DSP TMS320C6713
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1