Bart Moons, Flor Sanders, Thijs Paelman, J. Hoebeke
{"title":"Decentralized Linked Open Data in Constrained Wireless Sensor Networks","authors":"Bart Moons, Flor Sanders, Thijs Paelman, J. Hoebeke","doi":"10.1109/IOTSMS52051.2020.9340221","DOIUrl":null,"url":null,"abstract":"Data generated by sensors in Internet of Things ecosystems contains lots of valuable information, which is often not used to its full potential. This is mainly due to the fact that data is stored in proprietary storages and formats. Manufacturers of sensor devices often offer closed platforms to view and manage the data, which limits their reusability. Moreover, questions start to raise about true data ownership over data generated from monitoring our everyday lives. In order to overcome these issues several initiatives have emerged in the past to hand over data to the rightful owner. One of these initiatives is Solid, currently focusing on socially linked data. However, never before did one apply the Solid principles to Internet of Things data. Therefore, in this paper, a novel approach is presented where sensor data is handled from sensor to storage using open data formats and standards to ensure interoperability and reusability. It is shown that combining existing concepts can be helpful in designing decentralized Internet of Things data storages, on top of which data can be incorporated into the Linked Open Data cloud. This has been done by comparing the overhead of a regular approach, using Linked Open Data concepts on top of a sensor device, to an approach that was optimized for device management in constrained Internet of Things networks.","PeriodicalId":147136,"journal":{"name":"2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOTSMS52051.2020.9340221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Data generated by sensors in Internet of Things ecosystems contains lots of valuable information, which is often not used to its full potential. This is mainly due to the fact that data is stored in proprietary storages and formats. Manufacturers of sensor devices often offer closed platforms to view and manage the data, which limits their reusability. Moreover, questions start to raise about true data ownership over data generated from monitoring our everyday lives. In order to overcome these issues several initiatives have emerged in the past to hand over data to the rightful owner. One of these initiatives is Solid, currently focusing on socially linked data. However, never before did one apply the Solid principles to Internet of Things data. Therefore, in this paper, a novel approach is presented where sensor data is handled from sensor to storage using open data formats and standards to ensure interoperability and reusability. It is shown that combining existing concepts can be helpful in designing decentralized Internet of Things data storages, on top of which data can be incorporated into the Linked Open Data cloud. This has been done by comparing the overhead of a regular approach, using Linked Open Data concepts on top of a sensor device, to an approach that was optimized for device management in constrained Internet of Things networks.