Hybrid fuzzy-genetic algorithm approach for crew grouping

Hongbo Liu, Zhang Xu, A. Abraham
{"title":"Hybrid fuzzy-genetic algorithm approach for crew grouping","authors":"Hongbo Liu, Zhang Xu, A. Abraham","doi":"10.1109/ISDA.2005.51","DOIUrl":null,"url":null,"abstract":"Crew grouping is an important problem and formulating a good solution always involves many challenges. For example, grouping soldiers intelligently to tank combat units, we should take into consideration the combined technical proficiency of the soldiers, the amount of military training, the units from which the soldiers come, their service age, personal background, etc. In this paper, we propose a hybrid fuzzy-genetic algorithm (FGA) approach to solve the crew grouping problem. Fuzzy logic based controllers are applied to fine-tune dynamically the crossover and mutation probability in the genetic algorithms, in an attempt to improve the algorithm performance. The FGA approach is compared with the standard genetic algorithm (SGA). Empirical results clearly demonstrates that while the SGA approach gives satisfactory solutions for the problem, the FGA method usually performs significantly better.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Crew grouping is an important problem and formulating a good solution always involves many challenges. For example, grouping soldiers intelligently to tank combat units, we should take into consideration the combined technical proficiency of the soldiers, the amount of military training, the units from which the soldiers come, their service age, personal background, etc. In this paper, we propose a hybrid fuzzy-genetic algorithm (FGA) approach to solve the crew grouping problem. Fuzzy logic based controllers are applied to fine-tune dynamically the crossover and mutation probability in the genetic algorithms, in an attempt to improve the algorithm performance. The FGA approach is compared with the standard genetic algorithm (SGA). Empirical results clearly demonstrates that while the SGA approach gives satisfactory solutions for the problem, the FGA method usually performs significantly better.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机组分组的模糊-遗传混合算法
机组分组是一个重要的问题,制定一个好的解决方案往往涉及许多挑战。例如,将士兵智能化编入坦克作战部队,要综合考虑士兵的综合技术熟练程度、军事训练量、部队出身、服役年龄、个人背景等因素。本文提出一种混合模糊遗传算法(FGA)来解决机组人员分组问题。采用基于模糊逻辑的控制器对遗传算法中的交叉和变异概率进行动态微调,以提高遗传算法的性能。将该方法与标准遗传算法(SGA)进行了比较。实证结果清楚地表明,虽然SGA方法给出了令人满意的解决方案,但FGA方法通常表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed service-oriented architecture for information extraction system "Semanta" HAUNT-24: 24-bit hierarchical, application-confined unique naming technique The verification's criterion of learning algorithm New evolutionary approach to the GCP: a premature convergence and an evolution process character A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1