A Router Architecture for Real-Time Point-to-Point Networks

J. Rexford, J. Hall, K. Shin
{"title":"A Router Architecture for Real-Time Point-to-Point Networks","authors":"J. Rexford, J. Hall, K. Shin","doi":"10.1145/232973.232998","DOIUrl":null,"url":null,"abstract":"Parallel machines have the potential to satisfy the large computational demands of emerging real-time applications. These applications require a predictable communication network, where time-constrained traffic requires bounds on latency or throughput while good average performance suffices for best-effort packets. This paper presents a router architecture that tailors low-level routing, switching, arbitration and flow-control policies to the conflicting demands of each traffic class. The router implements deadline-based scheduling, with packet switching and table-driven multicast routing, to bound end-to-end delay for time-constrained traffic, while allowing best-effort traffic to capitalize on the low-latency routing and switching schemes common in modern parallel machines. To limit the cost of servicing time-constrained traffic, the router shares packet buffers and link-scheduling logic between the multiple output ports. Verilog simulations demonstrate that the design meets the performance goals of both traffic classes in a single-chip solution.","PeriodicalId":415354,"journal":{"name":"23rd Annual International Symposium on Computer Architecture (ISCA'96)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd Annual International Symposium on Computer Architecture (ISCA'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/232973.232998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

Parallel machines have the potential to satisfy the large computational demands of emerging real-time applications. These applications require a predictable communication network, where time-constrained traffic requires bounds on latency or throughput while good average performance suffices for best-effort packets. This paper presents a router architecture that tailors low-level routing, switching, arbitration and flow-control policies to the conflicting demands of each traffic class. The router implements deadline-based scheduling, with packet switching and table-driven multicast routing, to bound end-to-end delay for time-constrained traffic, while allowing best-effort traffic to capitalize on the low-latency routing and switching schemes common in modern parallel machines. To limit the cost of servicing time-constrained traffic, the router shares packet buffers and link-scheduling logic between the multiple output ports. Verilog simulations demonstrate that the design meets the performance goals of both traffic classes in a single-chip solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时点对点网络的路由器体系结构
并行机器有潜力满足新兴实时应用的大量计算需求。这些应用程序需要可预测的通信网络,其中受时间限制的流量需要限制延迟或吞吐量,而良好的平均性能足以满足“尽力而为”的数据包。本文提出了一种路由器架构,该架构可以根据不同流量类的冲突需求定制低级路由、交换、仲裁和流控制策略。路由器通过分组交换和表驱动的多播路由实现基于截止日期的调度,为时间受限的流量绑定端到端延迟,同时允许尽可能多的流量利用现代并行机器中常见的低延迟路由和交换方案。为了限制服务时间受限流量的成本,路由器在多个输出端口之间共享数据包缓冲区和链路调度逻辑。Verilog仿真表明,该设计在单芯片解决方案中满足两类流量的性能目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Bandwidth Limitations of Future Microprocessors Missing the Memory Wall: The Case for Processor/Memory Integration Instruction Prefetching of Systems Codes with Layout Optimized for Reduced Cache Misses STiNG: A CC-NUMA Computer System for the Commercial Marketplace High-Bandwidth Address Translation for Multiple-Issue Processors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1