Experimental Investigation on Vibration Responses of Fiberglass Reinforced Plastic

Nanang Endriatno
{"title":"Experimental Investigation on Vibration Responses of Fiberglass Reinforced Plastic","authors":"Nanang Endriatno","doi":"10.18535/IJECS/V10I4.4575","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to analyze the vibration displacement on fiberglass reinforced plastic beams with variations a number of fibers in the resin matrix. Composite beams was made of fiberglass and polyester resin matrix with a number of fiberglass: 0, 24, and 48. Composite beams was manufactured by hand lay-up method with the unidirectional fiber orientation. The composite beams used have the dimension of length: 500 mm, height: 20 mm, and width: 20 mm. During the experimental test, the beam was vibrated using an exciter motor which was placed at the end of the cantilever support then using a vibration meter, the vibration displacement data (mm) was measured by placing the vibration transducer postions : 50 mm, 250 mm, and 450 mm from the cantilever support. During the vibration test, the vibration displacement data on the vibration meter screen were recorded using a camera recorder and the data was taken 6 times at each of measurement points. The experimental and analysis results show that the value of vibration displacement (mm) decreases when the fiberglass is added to the composite beam, or in other words, the addition of fiberglass provides an increase in the ability of the beam to withstand vibrations. The maximum vibration displacement value on composites with 0 fiberglass: 0.641 mm, then the vibration displacement decreased in composites with 24 fiberglass: 0.506 mm and the lowest displacement value for the composites with 48 fiberglass: 0.395 mm. Whereas for 3 measurement points at positions 5 cm, 25 cm, and 45 cm along the beam for three kind of the composites, the maximum value of vibration displacement value was obtained at the end of beam composites or at 45 cm from cantilever support: 0.735 mm on composite beam with 0 fiberglass and minimum at position 5 cm near the cantilever support with the value of vibration displacement: 0.323 mm on composite beam with 48 fiberglass.","PeriodicalId":231371,"journal":{"name":"International Journal of Engineering and Computer Science","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18535/IJECS/V10I4.4575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to analyze the vibration displacement on fiberglass reinforced plastic beams with variations a number of fibers in the resin matrix. Composite beams was made of fiberglass and polyester resin matrix with a number of fiberglass: 0, 24, and 48. Composite beams was manufactured by hand lay-up method with the unidirectional fiber orientation. The composite beams used have the dimension of length: 500 mm, height: 20 mm, and width: 20 mm. During the experimental test, the beam was vibrated using an exciter motor which was placed at the end of the cantilever support then using a vibration meter, the vibration displacement data (mm) was measured by placing the vibration transducer postions : 50 mm, 250 mm, and 450 mm from the cantilever support. During the vibration test, the vibration displacement data on the vibration meter screen were recorded using a camera recorder and the data was taken 6 times at each of measurement points. The experimental and analysis results show that the value of vibration displacement (mm) decreases when the fiberglass is added to the composite beam, or in other words, the addition of fiberglass provides an increase in the ability of the beam to withstand vibrations. The maximum vibration displacement value on composites with 0 fiberglass: 0.641 mm, then the vibration displacement decreased in composites with 24 fiberglass: 0.506 mm and the lowest displacement value for the composites with 48 fiberglass: 0.395 mm. Whereas for 3 measurement points at positions 5 cm, 25 cm, and 45 cm along the beam for three kind of the composites, the maximum value of vibration displacement value was obtained at the end of beam composites or at 45 cm from cantilever support: 0.735 mm on composite beam with 0 fiberglass and minimum at position 5 cm near the cantilever support with the value of vibration displacement: 0.323 mm on composite beam with 48 fiberglass.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
玻璃钢振动响应的试验研究
本文的研究目的是分析树脂基体中纤维数量变化时玻璃纤维增强塑料梁的振动位移。复合梁由玻璃纤维和聚酯树脂基体组成,玻璃纤维的编号为0、24和48。采用单向光纤定向的手工铺层法制备复合梁。所采用的组合梁尺寸为长500mm、高20mm、宽20mm。在实验测试过程中,通过将振动传感器放置在距离悬臂支架50 mm、250 mm和450 mm的位置,利用悬臂支架末端的激振电机对梁进行振动,测量振动位移数据(mm)。振动试验时,用摄像机记录仪记录振动计屏幕上的振动位移数据,每个测点采集6次数据。实验和分析结果表明,在复合梁中加入玻璃纤维后,梁的振动位移(mm)值减小,即增加了复合梁的抗振动能力。当玻璃纤维含量为0时,复合材料的振动位移值最大为0.641 mm,当玻璃纤维含量为24时,复合材料的振动位移值减小为0.506 mm,当玻璃纤维含量为48时,复合材料的振动位移值最小为0.395 mm。在3种复合材料沿梁5cm、25cm和45cm位置的3个测点上,振动位移值的最大值在复合材料梁端或距离悬臂支座45 cm处,在0根玻璃纤维的复合材料梁处为0.735 mm,在靠近悬臂支座5cm处最小,在48根玻璃纤维的复合材料梁处振动位移值为0.323 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A FRAMEWORK FOR MANAGEMENT OF LEAKS AND EQUIPMENT FAILURE IN OIL WELLS Data-Driven Approach to Automated Lyric Generation Predictive Analytics for Demand Forecasting: A deep Learning-based Decision Support System A Model for Detection of Malwares on Edge Devices ENHANCE DOCUMENT VALIDATION UIPATH POWERED SIGNATURE VERIFICATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1