FOREST: Focused Object Retrieval by Exploiting Significant Tag Paths

Marilena Oita, P. Senellart
{"title":"FOREST: Focused Object Retrieval by Exploiting Significant Tag Paths","authors":"Marilena Oita, P. Senellart","doi":"10.1145/2767109.2767112","DOIUrl":null,"url":null,"abstract":"Content-intensive websites, e.g., of blogs or news, present pages that contain Web articles automatically generated by content management systems. Identification and extraction of their main content is critical in many applications, such as indexing or classification. We present a novel unsupervised approach for the extraction of Web articles from dynamically-generated Web pages. Our system, called Forest, combines structural and information-based features to target the main content generated by a Web source, and published in associated Web pages. We extensively evaluate Forest with respect to various baselines and datasets, and report improved results over state-of-the art techniques in content extraction.","PeriodicalId":316270,"journal":{"name":"Proceedings of the 18th International Workshop on Web and Databases","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Workshop on Web and Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2767109.2767112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Content-intensive websites, e.g., of blogs or news, present pages that contain Web articles automatically generated by content management systems. Identification and extraction of their main content is critical in many applications, such as indexing or classification. We present a novel unsupervised approach for the extraction of Web articles from dynamically-generated Web pages. Our system, called Forest, combines structural and information-based features to target the main content generated by a Web source, and published in associated Web pages. We extensively evaluate Forest with respect to various baselines and datasets, and report improved results over state-of-the art techniques in content extraction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FOREST:利用显著标记路径的聚焦对象检索
内容密集的网站,例如博客或新闻,提供包含由内容管理系统自动生成的Web文章的页面。识别和提取其主要内容在许多应用程序中是至关重要的,例如索引或分类。我们提出了一种新的无监督方法,用于从动态生成的Web页面中提取Web文章。我们的系统称为Forest,它结合了结构化和基于信息的特性,以Web源生成的主要内容为目标,并在相关的Web页面中发布。我们根据各种基线和数据集对Forest进行了广泛的评估,并报告了在内容提取方面采用最先进技术的改进结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovering Subsumption Relationships for Web-Based Ontologies Truth Finding with Attribute Partitioning Long-term Optimization of Update Frequencies for Decaying Information Analyzing Crowd Rankings The elephant in the room: getting value from Big Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1