Deep Reinforcement Learning-Based SFC Deployment Scheme for 6G IoT Scenario

Shuting Long, Bei Liu, Hui Gao, Xin Su, Xibin Xu
{"title":"Deep Reinforcement Learning-Based SFC Deployment Scheme for 6G IoT Scenario","authors":"Shuting Long, Bei Liu, Hui Gao, Xin Su, Xibin Xu","doi":"10.1109/ISCC58397.2023.10218207","DOIUrl":null,"url":null,"abstract":"To meet the extremely low latency requirements of 6G Internet of Things (IoT) services, 6G network should be able to intelligently allocate the network resources. Based on Mobile edge computing (MEC) and network function virtualization (NFV), the 6G NFV/MEC-enabled IoT architecture will be a viable architecture to enable flexible and efficient resource allocation. The architecture will enable the deployment of service function chains (SFCs) in NFV-enabled network edge nodes. However, due to the heterogeneous and dynamic nature of 6G IoT, it is a challenge to deploy SFCs rationally. Therefore, this paper proposes a knowledge-assisted deep reinforcement learning (KADRL) based SFC deployment scheme. The scheme achieves flexible and efficient resource allocation by deploying SFCs at appropriate edge nodes for the requirements of 6G IoT services. Simulation results demonstrate that KADRL can achieve better convergence performance and can meet the requirements of delay-sensitive IoT services.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To meet the extremely low latency requirements of 6G Internet of Things (IoT) services, 6G network should be able to intelligently allocate the network resources. Based on Mobile edge computing (MEC) and network function virtualization (NFV), the 6G NFV/MEC-enabled IoT architecture will be a viable architecture to enable flexible and efficient resource allocation. The architecture will enable the deployment of service function chains (SFCs) in NFV-enabled network edge nodes. However, due to the heterogeneous and dynamic nature of 6G IoT, it is a challenge to deploy SFCs rationally. Therefore, this paper proposes a knowledge-assisted deep reinforcement learning (KADRL) based SFC deployment scheme. The scheme achieves flexible and efficient resource allocation by deploying SFCs at appropriate edge nodes for the requirements of 6G IoT services. Simulation results demonstrate that KADRL can achieve better convergence performance and can meet the requirements of delay-sensitive IoT services.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
6G物联网场景下基于深度强化学习的SFC部署方案
为了满足6G物联网(IoT)业务的极低延迟要求,6G网络应该能够智能地分配网络资源。基于移动边缘计算(MEC)和网络功能虚拟化(NFV),支持6G NFV/MEC的物联网架构将成为实现灵活高效资源分配的可行架构。该架构将支持在支持nfv的网络边缘节点上部署业务功能链(sfc)。然而,由于6G物联网的异构性和动态性,合理部署sfc是一个挑战。因此,本文提出了一种基于知识辅助深度强化学习(KADRL)的SFC部署方案。该方案通过在合适的边缘节点部署sfc,满足6G物联网业务的需求,实现灵活高效的资源分配。仿真结果表明,KADRL具有较好的收敛性能,能够满足对延迟敏感的物联网业务的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
(POSTER) Advanced LTCC-Integrated Technologies for mmWave 5G/Satellite Communication Antennas Multiple Information Extraction and Interaction for Emotion Recognition in Multi-Party Conversation A GRASP-Based Algorithm for Virtual Network Embedding Designing Healthcare Relational Agents: A Conceptual Framework with User-Centered Design Guidelines Analysis of One-Bit DAC for RIS-Assisted MU Massive MIMO Systems with Efficient Autoencoder Based Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1