A novel cyclic algorithm for maximum likelihood frequency estimation

A. Shaw
{"title":"A novel cyclic algorithm for maximum likelihood frequency estimation","authors":"A. Shaw","doi":"10.1109/ICSYSE.1991.161165","DOIUrl":null,"url":null,"abstract":"An algorithm for estimation of frequencies of narrowband sources from noisy observation data is presented. For Gaussianly distributed noise, the algorithm produces maximum likelihood estimates, otherwise least-squares estimates, are obtained. The proposed algorithm is iterative, and at each step of iteration the optimization is with respect to a single frequency only, and hence simple hardware/software is sufficient for implementation. The performance of the algorithm has been compared with theoretical Cramer-Rao bounds.<<ETX>>","PeriodicalId":250037,"journal":{"name":"IEEE 1991 International Conference on Systems Engineering","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1991 International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1991.161165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An algorithm for estimation of frequencies of narrowband sources from noisy observation data is presented. For Gaussianly distributed noise, the algorithm produces maximum likelihood estimates, otherwise least-squares estimates, are obtained. The proposed algorithm is iterative, and at each step of iteration the optimization is with respect to a single frequency only, and hence simple hardware/software is sufficient for implementation. The performance of the algorithm has been compared with theoretical Cramer-Rao bounds.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的最大似然频率估计循环算法
提出了一种基于噪声观测数据的窄带源频率估计算法。对于高斯分布的噪声,算法产生极大似然估计,否则得到最小二乘估计。所提出的算法是迭代的,在迭代的每一步优化仅针对单个频率,因此简单的硬件/软件就足以实现。将该算法的性能与理论Cramer-Rao界进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and simulation of a heat exchanger Multidisciplinary modeling and design of a space system Robust stabilization of an aero-elastic system Inductive character learning and classification with genetic algorithms Determining bus arbitration policies and data transfer techniques for multiprocessor systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1