Micro grid architecture for line fault detection and isolation

M. Ramesh, N. Mohan, A. R. Devidas
{"title":"Micro grid architecture for line fault detection and isolation","authors":"M. Ramesh, N. Mohan, A. R. Devidas","doi":"10.5220/0005454002500255","DOIUrl":null,"url":null,"abstract":"One of the major problems power grids system face today is the inability to continuously deliver power at the consumer side. The main reason for this is the occurrence of faults and its long term persistence within the system. This persistence of faults causes the cascading failure of the system, thereby adversely affecting the connected loads. Traditional methods of fault isolation cause the shutdown of power to a large area to maintain the system stability. Today, localization of faults and its isolation is doing manually. Therefore, a localized fault recovery mechanism is very essential to maintain the system;s stability after the occurrence of a fault. In this paper, we have developed fast fault detection and isolation mechanism for single phase to neutral line fault in a three phase islanded micro grid scenario. The fault detection and isolation during the islanded operation mode of a micro grid is very critical, since bidirectional power flow is present. The fault detection mechanism we developed can detect and isolate the fault within a few milliseconds and localize the fault within a two second delay for both in single and bi-directional power flow scenarios. The proposed system is capable of locating the exact faulted segment with the aid of the communication network integrated into the power grid. The implemented system was tested with different ranges of fault current and the analysis showed that the proposed system could localize the fault with less than a two second delay.","PeriodicalId":408526,"journal":{"name":"2015 International Conference on Smart Cities and Green ICT Systems (SMARTGREENS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Smart Cities and Green ICT Systems (SMARTGREENS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005454002500255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

One of the major problems power grids system face today is the inability to continuously deliver power at the consumer side. The main reason for this is the occurrence of faults and its long term persistence within the system. This persistence of faults causes the cascading failure of the system, thereby adversely affecting the connected loads. Traditional methods of fault isolation cause the shutdown of power to a large area to maintain the system stability. Today, localization of faults and its isolation is doing manually. Therefore, a localized fault recovery mechanism is very essential to maintain the system;s stability after the occurrence of a fault. In this paper, we have developed fast fault detection and isolation mechanism for single phase to neutral line fault in a three phase islanded micro grid scenario. The fault detection and isolation during the islanded operation mode of a micro grid is very critical, since bidirectional power flow is present. The fault detection mechanism we developed can detect and isolate the fault within a few milliseconds and localize the fault within a two second delay for both in single and bi-directional power flow scenarios. The proposed system is capable of locating the exact faulted segment with the aid of the communication network integrated into the power grid. The implemented system was tested with different ranges of fault current and the analysis showed that the proposed system could localize the fault with less than a two second delay.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于线路故障检测和隔离的微电网体系结构
当今电网系统面临的主要问题之一是无法向用户端持续输送电力。造成这种情况的主要原因是故障的发生及其在系统中的长期持续存在。这种故障的持续会导致系统的级联故障,从而对连接的负载产生不利影响。传统的故障隔离方法导致大面积断电,以维持系统的稳定。目前,故障的定位和隔离都是手工完成的。因此,局部故障恢复机制对于维持系统在故障发生后的稳定性至关重要。在本文中,我们开发了三相孤岛微电网中单相到中性线故障的快速故障检测和隔离机制。由于微电网存在双向潮流,孤岛运行模式下的故障检测与隔离至关重要。所开发的故障检测机制在单潮流和双向潮流中都能在几毫秒内检测和隔离故障,并在2秒内定位故障。该系统能够借助集成在电网中的通信网准确定位故障段。在不同的故障电流范围内对系统进行了测试,分析表明该系统可以在小于2秒的延迟内定位故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeLi2P: A user centric, scalable demand side management strategy for smart grids Agent-based transportation: Demand management demand effects of reserved parking space and priority lanes in comparison and combination Parameters affecting the energy performance of the transport sector in smart cities Towards a sustainable smart cities integration in teaching and research Central model predictive control of a group of domestic heat pumps case study for a small district
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1