{"title":"DBBoost-Enhancing Imbalanced Classification by a Novel Ensemble Based Technique","authors":"Chunkai Zhang, Pengfei Jia","doi":"10.1109/ICMB.2014.45","DOIUrl":null,"url":null,"abstract":"Classification with imbalanced data-sets has become one of the most popular issues in machine learning, since it prevails in various applications. For binary-class problem, the amount of instances from the majority class is significant larger than that from the minority class. Consequently, traditional classifiers achieve a better performance over the majority class, while unsatisfactory predictive accuracy over the minority class. The emergence of ensemble learning provides a possible solution of solving this concern. And there are many recent researches indicate that the combination of Boosting and/or Bagging with pre-processing techniques is an effective way to enhance the classification performance of imbalanced data-sets. Centered on binary-class imbalanced problem, to overcome the drawbacks of state-of-the-art approaches, this paper introduces a novel technique (DBBoost) based on the combination of AdaBoost with an adaptive sampling approach. Through supporting by statistical analysis, experiments show that DBBoost outperforms the state-of-the-art methods based on ensemble.","PeriodicalId":273636,"journal":{"name":"2014 International Conference on Medical Biometrics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Medical Biometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMB.2014.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Classification with imbalanced data-sets has become one of the most popular issues in machine learning, since it prevails in various applications. For binary-class problem, the amount of instances from the majority class is significant larger than that from the minority class. Consequently, traditional classifiers achieve a better performance over the majority class, while unsatisfactory predictive accuracy over the minority class. The emergence of ensemble learning provides a possible solution of solving this concern. And there are many recent researches indicate that the combination of Boosting and/or Bagging with pre-processing techniques is an effective way to enhance the classification performance of imbalanced data-sets. Centered on binary-class imbalanced problem, to overcome the drawbacks of state-of-the-art approaches, this paper introduces a novel technique (DBBoost) based on the combination of AdaBoost with an adaptive sampling approach. Through supporting by statistical analysis, experiments show that DBBoost outperforms the state-of-the-art methods based on ensemble.