Shang Gao, Zhe Peng, Bin Xiao, Qingjun Xiao, Yubo Song
{"title":"SCoP: Smartphone energy saving by merging push services in Fog computing","authors":"Shang Gao, Zhe Peng, Bin Xiao, Qingjun Xiao, Yubo Song","doi":"10.1109/IWQoS.2017.7969114","DOIUrl":null,"url":null,"abstract":"Energy saving solutions on smartphone devices can greatly extend a smartphone's lasting time. However, today's push services require keep-alive connections to notify users of incoming messages, which cause costly energy consuming and drain a smartphone's battery quickly in cellular communications. Most keep-alive connections force smartphones to frequently send heartbeat packets that create additional energy-consuming radio-tails. No previous work has addressed the high-energy consumption of keep-alive connections in smartphones push services. In this paper, we propose Single Connection Proxy (SCoP) system based on fog computing to merge multiple keep-alive connections into one, and push messages in an energy-saving way. The new design of SCoP can satisfy a predefined message delay constraint and minimize the smartphone energy consumption for both real-time and delay-tolerant apps. SCoP is transparent to both smartphones and push servers, which does not need any changes on today's push service framework. Theoretical analysis shows that, given the Poisson distribution of incoming messages, SCoP can reduce the energy consumption by up to 50%. We implement SCoP system, including both the local proxy on the smartphone and remote proxy on the “Fog”. Experimental results show that the proposed system consumes 30% less energy than the current push service for real-time apps, and 60% less energy for delay-tolerant apps.","PeriodicalId":422861,"journal":{"name":"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2017.7969114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Energy saving solutions on smartphone devices can greatly extend a smartphone's lasting time. However, today's push services require keep-alive connections to notify users of incoming messages, which cause costly energy consuming and drain a smartphone's battery quickly in cellular communications. Most keep-alive connections force smartphones to frequently send heartbeat packets that create additional energy-consuming radio-tails. No previous work has addressed the high-energy consumption of keep-alive connections in smartphones push services. In this paper, we propose Single Connection Proxy (SCoP) system based on fog computing to merge multiple keep-alive connections into one, and push messages in an energy-saving way. The new design of SCoP can satisfy a predefined message delay constraint and minimize the smartphone energy consumption for both real-time and delay-tolerant apps. SCoP is transparent to both smartphones and push servers, which does not need any changes on today's push service framework. Theoretical analysis shows that, given the Poisson distribution of incoming messages, SCoP can reduce the energy consumption by up to 50%. We implement SCoP system, including both the local proxy on the smartphone and remote proxy on the “Fog”. Experimental results show that the proposed system consumes 30% less energy than the current push service for real-time apps, and 60% less energy for delay-tolerant apps.