Best optimal route cover search using spatial keyword covering

B. S. Ayyappa Kumar, A. S L C Sekhara Kumari
{"title":"Best optimal route cover search using spatial keyword covering","authors":"B. S. Ayyappa Kumar, A. S L C Sekhara Kumari","doi":"10.1109/ICCCSP.2017.7944098","DOIUrl":null,"url":null,"abstract":"Business features are indicated with the help of keywords in spatial database. While retrieving data from spatial database a problem occurs and named as Closest Keyword Cover Search, problem occurs due to set of query keywords and minimum inter object distance between them. Object evaluation for the best decision making depends on the increase of availability and keyword rating. Closest keywords search is extended to Best Keyword Cover deals with inter object distance and keyword rating in more standard manner. Initially baseline algorithm is used to overcome the problem mentioned and it is not applicable for real time databases, in order to overcome this a new algorithm is proposed and named as Keyword Nearest Neighbor Expansion it reduces the number of candidate keyword covers compared to baseline algorithm. With the help of K-NNE algorithm local best solution is obtained and generates less new candidate keyword covers compared to baseline algorithm.","PeriodicalId":269595,"journal":{"name":"2017 International Conference on Computer, Communication and Signal Processing (ICCCSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Communication and Signal Processing (ICCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCSP.2017.7944098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Business features are indicated with the help of keywords in spatial database. While retrieving data from spatial database a problem occurs and named as Closest Keyword Cover Search, problem occurs due to set of query keywords and minimum inter object distance between them. Object evaluation for the best decision making depends on the increase of availability and keyword rating. Closest keywords search is extended to Best Keyword Cover deals with inter object distance and keyword rating in more standard manner. Initially baseline algorithm is used to overcome the problem mentioned and it is not applicable for real time databases, in order to overcome this a new algorithm is proposed and named as Keyword Nearest Neighbor Expansion it reduces the number of candidate keyword covers compared to baseline algorithm. With the help of K-NNE algorithm local best solution is obtained and generates less new candidate keyword covers compared to baseline algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最优路线覆盖搜索使用空间关键字覆盖
利用空间数据库中的关键词来表示业务特征。在从空间数据库中检索数据时,出现了一个问题,称为最接近关键字覆盖搜索,这是由于查询关键字集和它们之间的对象间距离最小而出现的问题。最佳决策的对象评估取决于可用性和关键字评级的增加。最接近关键字搜索扩展到最佳关键字覆盖处理对象间距离和关键字评级在更标准的方式。最初采用基线算法来克服上述问题,但它并不适用于实时数据库,为了克服这一问题,提出了一种新的算法,并将其命名为关键字最近邻扩展算法,它比基线算法减少了候选关键字覆盖的数量。与基线算法相比,K-NNE算法得到了局部最优解,产生的新候选关键字覆盖较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright form Copyright page Development of efficient VLSI architecture for speech processing in mobile communication Detection of sleep apnea from multiparameter monitor signals using empirical mode decomposition Utilization based prediction model for resource provisioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1