Modeling and prediction of moving region trajectories

Conny Junghans, Michael Gertz
{"title":"Modeling and prediction of moving region trajectories","authors":"Conny Junghans, Michael Gertz","doi":"10.1145/1878500.1878507","DOIUrl":null,"url":null,"abstract":"Data about moving objects is being collected in many different application domains with the help of sensor networks, GPS-enabled devices, and in particular airborne sensors and satellites. Such moving objects often represent not just point-based objects, but rather moving regions like hurricanes, oil-spills, or animal herds. One key application feature users are often interested in is the exploration and prediction of moving object trajectories. While there exist models and techniques that help to predict the movement of moving point objects, no such method for moving regions has been proposed yet.\n In this paper, we present an approach to model and predict the development of moving regions. Our method not only predicts the trajectory of regions, but also the evolution of a region's spatial extent and orientation. For this, moving regions are modelled using minimum enclosing boxes, and evolution patterns of regions are determined using linear regression and a recursive motion function. We demonstrate the functionality and effectiveness of the proposed technique using real-world sensor data from different application domains.","PeriodicalId":190366,"journal":{"name":"International Workshop on GeoStreaming","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on GeoStreaming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1878500.1878507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Data about moving objects is being collected in many different application domains with the help of sensor networks, GPS-enabled devices, and in particular airborne sensors and satellites. Such moving objects often represent not just point-based objects, but rather moving regions like hurricanes, oil-spills, or animal herds. One key application feature users are often interested in is the exploration and prediction of moving object trajectories. While there exist models and techniques that help to predict the movement of moving point objects, no such method for moving regions has been proposed yet. In this paper, we present an approach to model and predict the development of moving regions. Our method not only predicts the trajectory of regions, but also the evolution of a region's spatial extent and orientation. For this, moving regions are modelled using minimum enclosing boxes, and evolution patterns of regions are determined using linear regression and a recursive motion function. We demonstrate the functionality and effectiveness of the proposed technique using real-world sensor data from different application domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动区域轨迹的建模与预测
在传感器网络、支持gps的设备,特别是机载传感器和卫星的帮助下,在许多不同的应用领域收集有关移动物体的数据。这些移动的对象通常不仅仅代表基于点的对象,还代表像飓风、石油泄漏或动物群这样的移动区域。用户经常感兴趣的一个关键应用功能是探索和预测运动物体的轨迹。虽然已有模型和技术可以帮助预测移动点物体的运动,但尚未提出用于移动区域的方法。在本文中,我们提出了一种模拟和预测移动区域发展的方法。我们的方法不仅可以预测区域的轨迹,还可以预测区域的空间范围和方向的演变。为此,使用最小围框对运动区域进行建模,并使用线性回归和递归运动函数确定区域的演化模式。我们使用来自不同应用领域的真实传感器数据来演示所提出技术的功能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clustering spatial data streams for targeted alerting in disaster response ADTOS: arrival departure tradeoff optimization system Mining robust neighborhoods for quality control of sensor data EHSTC: an enhanced method for semantic trajectory compression Towards window stream queries over continuous phenomena
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1