JS Capsules: A Framework for Capturing Fine-grained JavaScript Memory Measurements for the Mobile Web

Usama Naseer, Theophilus A. Benson
{"title":"JS Capsules: A Framework for Capturing Fine-grained JavaScript Memory Measurements for the Mobile Web","authors":"Usama Naseer, Theophilus A. Benson","doi":"10.1145/3579327","DOIUrl":null,"url":null,"abstract":"Understanding the resource consumption of the mobile web is an important topic that has garnered much attention in recent years. However, existing works mostly focus on the networking or computational aspects of the mobile web and largely ignore memory, which is an important aspect given the mobile web's reliance on resource-heavy JavaScript. In this paper, we propose a framework, called JS Capsules, for characterizing the memory of JavaScript functions and, using this framework, we investigate the key browser mechanics that contribute to the memory overhead. Leveraging our framework on a testbed of Android mobile phones, we conduct measurements of the Alexa top 1K websites. While most existing frameworks focus on V8 - the JavaScript engine used in most popular browsers - in the context of memory, our measurements show that the memory implications of JavaScript extends far beyond V8 due to the cascading effects that certain JavaScript calls have on the browser's rendering mechanics. We quantify and highlight the direct impact that website DOM have on JavaScript memory overhead and present, to our knowledge, the first root-cause analysis to dissect and characterize their impact on JavaScript memory overheads.","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the resource consumption of the mobile web is an important topic that has garnered much attention in recent years. However, existing works mostly focus on the networking or computational aspects of the mobile web and largely ignore memory, which is an important aspect given the mobile web's reliance on resource-heavy JavaScript. In this paper, we propose a framework, called JS Capsules, for characterizing the memory of JavaScript functions and, using this framework, we investigate the key browser mechanics that contribute to the memory overhead. Leveraging our framework on a testbed of Android mobile phones, we conduct measurements of the Alexa top 1K websites. While most existing frameworks focus on V8 - the JavaScript engine used in most popular browsers - in the context of memory, our measurements show that the memory implications of JavaScript extends far beyond V8 due to the cascading effects that certain JavaScript calls have on the browser's rendering mechanics. We quantify and highlight the direct impact that website DOM have on JavaScript memory overhead and present, to our knowledge, the first root-cause analysis to dissect and characterize their impact on JavaScript memory overheads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
JS胶囊:一个为移动Web捕获细粒度JavaScript内存测量的框架
了解移动网络的资源消耗是近年来备受关注的一个重要话题。然而,现有的工作大多集中在移动web的网络或计算方面,而很大程度上忽略了内存,这是一个重要的方面,因为移动web依赖于资源密集型的JavaScript。在本文中,我们提出了一个框架,称为JS胶囊,用于表征JavaScript函数的内存,并使用该框架,我们研究了导致内存开销的关键浏览器机制。在Android手机的测试平台上利用我们的框架,我们对Alexa排名前1K的网站进行了测量。虽然大多数现有框架都关注V8——大多数流行浏览器中使用的JavaScript引擎——在内存环境中,我们的测量表明,由于某些JavaScript调用对浏览器渲染机制的级联效应,JavaScript对内存的影响远远超出了V8。我们量化并强调了网站DOM对JavaScript内存开销的直接影响,据我们所知,这是第一个剖析和描述其对JavaScript内存开销影响的根本原因分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
A Large Scale Study and Classification of VirusTotal Reports on Phishing and Malware URLs POMACS V7, N2, June 2023 Editorial SplitRPC: A {Control + Data} Path Splitting RPC Stack for ML Inference Serving Smash: Flexible, Fast, and Resource-efficient Placement and Lookup of Distributed Storage Towards Accelerating Data Intensive Application's Shuffle Process Using SmartNICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1